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STATISTICAL ANALYSIS FOR GEOTECHNICAL DATA

PART I: INTRODUCTION

Backaround

Traditionally, the planning of geotechnical site characterization and the
analysis of data which result have heen accomplished by ad hoc procedures.
These rest primarily on intuition and visual inspection of data. Advances in
geotechnical testing and modeling combined with stricter regulatory oversight
have led to changes with important implications for site characterization and
data analysis. Principal among these are: (a) increased numbers and quality
of geotechnical data, (b) increased concern with quality assurance in
engineering, and (¢} increased requlatory interest in the connection hetween
performance assessments, parameter estimates, and supporting data.

At the same time, growing experience with the use of simple statistical
methods in geotechnical engineering has provided techniques tailored to the
special needs of geotechnical practice. These methods provide means for
accomodating recent changes, and for improving the practice of geotechnical
engineering. Such statistical methods are well suited to automatic data
processing; they provide an explicit, repeatable procedure for obtaining
parameter values; and they allow quantified levels of confidence to be assigned

to parameter estimates,.

Purpose
The purpose of this report is provide potential users of statistical
methods for geotechnical data analysis with an introduction to practical
concepts, definitions, and techniques. The report is not exhaustive; it
intends to present simple, useful techniques in sufficient detail that a reader

not already conversant with statistical theory may undertake practical analyses

10
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of geotechnical data. These analyses should make better, more powerful use of
data than has been possible with ad hoc procedures, and should provide
estimates of uncertainty in engineering parameters to serve as the basis for
error analysis of engineering calculations, This report complements materials
presented in "Error analysis for geotechnical engineering," (Contract Report
GL-87-3), in which the use of quantified estimates of uncertainty and error in

geotechnical modeling is discussed.

General Description of Statistical Analysis

The approach to statistical analysis of geotechnical data developed in
this report is based on summarizing a parameter value by two numbers: a best
estimate and a measure of uncertainty. The 'mean' or arithmetical average is
used for the first; the 'standard deviation' or root-mean-square variation is
used for the second. These and other statistical terms are defined as they
appear in later sections. Importantly, the methods used in the report do not
require restrictive assumptions on the shape of probability distributions

1
(e.q., the assumption of Normal distributions), and as a result the report ‘
considers probability distributions with only passing interest. The main !

concept behind the approach of this report is that uncertainty or error in

4%,

|
geotechnical parameter estimates can be divided into four types, and the

importance of each can be analyzed individually. The ability to separately

4

PP

consider each principal source of uncertainty qgreatly simplifies the task of

-@
5 analyzing data. Once each source of uncertainty has been considered

ff

: individually, explicit rules based on probability theory are used to calculate

4 A
SO R R R

the overall uncertainty in a parameter estimate.
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The four types of uncertainty in a geotechnical parameter estimate are,
(a) actual variability in the soil deposit, (b) random measurement error, (c)
measurement bias, and (d) limited numbers of tests (Fig. 1). The first two
cause the scatter so common in geotechnical measurements., The last two cause
systematic errors which are unrelated to location. Fach of these sources of
uncertainty affects engineering calculations in its own way and as a result
should be analyzed individually. At the end, the four uncertainties are
combined to construct a statistical soil profile. The statistical profile
shows the best estimate profile of soil properties with depth, and provides
uncertainty envelopes about that profile. The statistical design profile is
the first step in error analysis, as described in the accompanying report,

"Error analysis for geotechnical enginecring,” (Contract Report GL-87-3).

Organization of This Report

This report is organized in five parts. After the Introduction, Part II
summarizes common techniques for summarizing data using statistical
descr.ptions. Part III introduces techniques for modeling and summarizing the
spatial character of soil property data and the means for establishing the
amount of measurement error in observed data scatter. Part IV addresses
systematic or bias errors in measurements and in models. Finally, part V puts
the techniques for Parts II, III, and IV together to summarize a soil profile

statistically.
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PART II: DESCRIBING SOILS DATA
Engineering data on soils properties are usually scattered. Graphical and
simple mathematical techniques are useful in summérizing this scatter so that a
better understanding of the data can be developed. For the present purposes,
such graphical and mathematical techniques are used to obtain, (a) best
estimates of soil engineering properties, and (b) quantitative assessments of

the uncertainty or error in such estimates,

Histograms and Frequency Distributions

Histograms and frequency distributions are graphical descriptions of the
variability or scatter of data. Plotting a histogram or frequency distribution

is usually the first step in data analysis.

Histograms

A histogram is a diagrammatic representation of the frequency with which
measurements lie within specified intervals of magnitude. For example, Fig. 2a
shows a histogram of standard penetration test (SPT) blow count data within a
single stratum of silty alluvial sand, The intervals along the horizontal axis
of the histoqgqram are each of the same width, and the height of the bars shows
the frequeny of data lying within each interval., Since the intervals are all
of the same width, the area of each bar is also proportional to the frequency
of data within that interval.

A histogram is a convenient way of displaying data since many important
features are immediately apparent in diagrammatic form. For example, the data
of Fig. 2a are seen to vary about a central peak at about 9 blows/ft., The data

are more or less symmetric about this peak, and data which vary substantially

from the peak are infrequent. The bulk of the data lies within an interval




approximately between 3 to 15 blows/ft, with extreme values ranging from 0 to
24 blows/ft. A symmetric distribution of data like Fig. 2a is often described
as bell-shaped.

A histogram of another set of cone pentration test data is shown in Fig.
2b, These data are not symmetric about their peak frequency. The largest
frequency occurs near the lower end of the scale, and while the frequencies
decline on both sides of the peak, they do so more slowly on the upper side,
that is, as penetration resistance increases. Such distributions are said to
be skewed.

To construct a histogram the following procedure is used:

1. Divide the horizontal axis of the graph into about 5 to
10 intervals of constant width.

2. Count the number of data having wvalues within each
interval.

3. Plot this number as a vertical bar above the appropriate
interval.

About 5 to 10 intervals are used because this number typically allows a
sufficient number of data in each interval for the observed frequencies to vary
smoothly, and yet provides adequate definition of the shape of the distribution
of data. For small numbers of data a convenient rule-of-thumb for choosing

the number of intervals is

k = 1 + 3.3 10910 n , (1)

in which n = the number of data values and k (rounded to the next higher
integer) = the number of intervals (Sturges, 1926)., The choice of number of

intervals can affect the visual interpretation of data scatter. Thus, 1t is
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sometimes useful to construct more than one histogram, using a different number
of intervals on each plot in order to obtain an intuitive feel for the data
scatter. This problem is circumvented by using a frequency distribution, as
described below.

Usually, it is convenient to specify interval boundaries to one fewer
decimal places than that to which the data are measured, avoiding the problem
of where to place values falling directly on an interval boundary. When this
is not possible some consistent procedure should be adopted for deciding how to
count data which fall directly on an interval boundary. For example, any value
lying on a boundary might be automatically counted in the lower interval. Some
people prefer to allocate 1/2 unit to each adjacent interval. This is an
acceptable procedure but it leads to noninteger frequencies which may be

awkward.

Frequency Distributions

A frequency distribution is obtained by changing the vertical axis from
the frequency of data within class intervals to the cumulative fraction of data
less than a particular value., The frequency distribution is a
fraction-less-than (or percent-less-than) curve. Fig. 3 shows the frequency
distributicn for the SPT data of Fiaq. 2a.

To construct a frequency distribution the following procedure is used:

1. Arranae the data in ascending order, xy,X5,...,Xj,...,%Xp-
2. For each value x;, calculate the frequency f; of data less
than or equal to that value, fj=i/n. For the larqest value,

assign the frequency f,=n/n+1,

3. Plnt the value of the data x;

i along the horizontal axis and

its corresponding cumulative frequency f; along the vertical
axis.
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The advantages of the frequency distribution are that it does not require
data to be qrouped into arbitrary numbers of intervals and the fraction of
data less-than or greater-than any value can be immediately read from the
graph. The disadvantage is that the shape of the distribution of data is not

as clearly apparent in a frequency distribution as in a histoqram,

Probability Paper

Probability paper is graph paper with special grids designed such that the
cumulative frequencies of particular types of frequency distributions plot as
straight lines. Fig. 4 shows the data of Fig. 2a plotted on Normal
probability paper. Normal probability paper causes bell-shaped distributions
(more precisely, Normal distributions) to plot as straight lines. Other types
of probability paper are also available., In this report little use is made of
the mathematical shape of the frequency distributions of data. Nevertheless,
probability papers are commonly encountered in practice and in statistical

software, and are often a convenient way to plot data.

Mean and Standard Deviation

Graphical descriptions of the variability among data are useful for
obtaining a feeling for the scatter in a particular data set, but for
engineering applications a mathematical description of data scatter is usually
needed., This is conveniently proviied hy the mean and standard deviation. The
mean is a quantitative measure c€ the central location of the scatter of
measurements along the x-axis. The standard deviation is a quantitative

measure of the dispersion of the measurements. Together, the mean and standard
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deviation summarize important information about the distribution of measured

values, and provide a useful description of data scatter for use in analysis.

Mean
The mean of a set of measurements xy, i=1,...,n, is the arithmetic

average,
1xi = "mean" . (2)

The mean is the center of gravity of the data along the X-axis. 1In this
report, the mean is used as the best estimate of a soil parameter because it is
neither conservative nor unconservative. In some references the mean is called
the expected value of x and denoted E[x], but this expression is not used

here. In Fig. 2a the mean of the histogram of the SPT data is 8.9 blows/ft.

Standard Deviation

The standard deviation measures the variability of data about their mean.
Mathematically, the standard deviation is the square root of the sum of

squares of the difference between each measurement and the mean,

= "standard deviation" . (3)

X e z (xi- mx)2
For the histoqram of SPT data in Fig. 2a, the standard deviation 1s 4.4 blows
per ft. The standard deviation can be thought of as the square root of the
moment of inertia of the data about the mean. Whereas, the mean describes the
center of the data along the X-axis, the standard deviation describes the
spread. The mean and standard deviation are measured in the same units as the

data themselves. The denominator (n-1) is used in FEqn. 3 rather than n because
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the mean m, that appears in the Egn., 3 is itself also estimated from the data.

X

Thus, to the extent that m, differs slightly from the real mean of x in a soil

X
deposit, the variations (xi-mx)2 are on averaqge slightly smaller than the
corresponding variations about the real mean. Mathematically, the squared
variations are on average too small by the factor (n-1)/n, and thus the
denominator in Fqn. 3 corrects for this bias.

For a bell-shaped, or Normal, distribution of data the mean occurs at the
0.5 fractile. The 0.5 fractile, denoted x5 g, is that value of x which splits
the data into two sets, half smaller and half larger. 50% of the data are
smaller than x5 5. The value x5 g is commonly called the median. Again, for a
Normal distribution the mean plus one standard deviation occurs at the 0.84
fractile; the mean minus one standard deviation occurs at the 0.16 fractile.
This can be determined from tables of the MNormal distribution which are found
in most statistics textbhooks (e.g., Benjamin and Cornell, 1969)., When data
plot as a line on Normal probability paper, the mean and standard deviation can
be readily estimated by fitting a line to the data and determining the values

of x which correspond to the 0.16, 0.5, and 0.84 fractiles. Denoting these

X0.16» X0.5, And X g4,

My = Xp_s5 ' (4)

Sy ~ - . (5)

In calculations it is sometimes convenient to deal with sx2 rather than

Sy, just as in mechanics it is convenient to deal with the moment of inertia

18
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3?: rather than its square root. The square of the standard deviation is called
FUAN
. the variance, and is exacatly equivalent to the moment of inertia in
0
lﬁ mechanics. The variance in the moment of inertial of the data about the mean
N
e Dy
X
" - 2
-“A Ve = 84° = T"variance" . (6)
-
%
The variance of the data in Fig. 2a is (4.4 blows/ft)2 = 19.4 (blows/ft)2. The
N
by .
variance is measured in the square of the units of the data. If the data are
3' "
: X measured in blows/ft, the variance is measured (blows/ft)z. Given their
oI
A similarity to mechanical moments, the mean and variance are often called
"
¥
(statistical) moments of the data. The mean is the first moment about x=0.
\
»
L
li‘ The variance is the second moment about x=m,. A description of soil properties
L]
o
’f using only means and standard deviations is said to be a second-moment
P "
! description. ;
ot :
B, }
LSy i
:\5 Coefficient of Variation j
'b !
o The ratio of the standard deviation to the mean, or the proportional
J
:V' variability, is called the coefficient of variation,
o
1N
}: Ry = sy/my = T"coefficient of variation" . (7)
o
- The coefficient of variation of the data in Fig. 2a is Uy = (4.4 blows/ft/8.9
e
-
) .
{} blows/ft) = 0.49, and could bhe expressed as a percentage (i.e., 49%),
;.{ Correlation
- @;
Y. For two or more soil properties, variations in different properties may
4,
)
o : be associated with one another. That 1is, variations may not be independent.
e
ﬁf For example, the water content and undrained strenqgth of clays are known to be
“ Y i

associated with one another. Thus, variations in water content and undrained
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strength are not independent, they depend on one another throuah causal
mechanical factors.

Soil properties or engineering parameters may also be associated with one
another not by a causal mechanical factor but by the way they are measured or
estimated. For example, triaxial compression tests might be performed to
estimate the effective strength parameters (c',$') of the Mohr-Coulomb strength
criterion. If ¢' and »' are estimated by fitting a line to the resulting Mohr
circles, error can be introduced by the way the envelope is fit. An envelope
drawn too flat, leads to a $' which is too small., An envelope drawn too
steep leads to a »' which is too large. However, if an envelope is drawn
too flat, then for the envelope to still fit the data, the cohesion intercept
c' must be made larger than it should be. Conversely, if the envelope is drawn
too steep, the cohesion intercept must be made smaller than it should be to
still fit the data. FErrors in the estimates of %' and c¢' are associated with
one another.

The strength of association between soil parameters is expressed by the

correlation coefficient,

, Xi=Dy  Yyi-my _
Tyy = ~ D = ) . ) = Trcorrelation coefficient" ) (8)
X Yy
in which my and my = the means of x and y, respectively; s, and Sy = the

respective standard deviations of x and y. The two terms within the summation
are the deviations of x and y measured in units ot their respective standard
daviations. That is, they are standardized dimensionless deviates. Thus the
correlation coefficient is a non-dimensional measure of the degree to which two

parameters vary together,
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The range of Txy is -1<rxy<+1: Ty = +1 indicates a perfect linear relation

between x and y having positive slope, Tyy = -1 indicates a perfect linear
relation between x and y having negative slope, ey = 0 indicates no relation
between x and y. When Ty = 0, x and y are said to be independent and the
scatter diagram of y plotted against x shows no trend.

If the variations of x and y are not normalized by their respective

standard deviations, the covariance is obtained,

Cx,y = —%— z (xi-mx)(yi-my) = "covariance" . (9)

The covariance is not dimensionless. From Eqns. 8 and 9,

X,y = (sxsy) Tyxy . (10)

Fig. 5 shows a scatter plot of compaction control data collected during
the construction of an engineered fill. Compaction water content is plotted
along the X-axis; compacted dry density is plotted along the Y-axis. Each
point corresponds to one test in which both water content and dry density were
measured. As should be expected, water content and dry density are, on
average, inversely related to one another. The correlation coefficient for the
data of Fig. 5 calculated using Eqn. 8 is Ty = -0.7.

For comparison, Fig. 6 shows scatter plots of x,y having various
coefficients of correlation., When rxy>0 the data cloud slopes upward to the
right. An intunitive feel can he ohtained by thinking of a vertical line
through my, and a horizontal line through my, dividing the scatter diaaqram into

four quadrants. 1In the upper right quadrant both (xj-my) and (yi-my) are

positive, thus their product is positive. 1In the lower left quadrant hoth
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{x3-m,) and (Vi‘my) are negative, thus again their product is positive. In the
other two quadrants the products are negative. Therefore any cloud of data
which has most of its points in the upper right and lower left quadrants has an
rxy>0. Conversely, any cloud with most of its points in the lower right and
upper left quadrants has an rxy<0. If the points fall equally in all four
quadrants, Txy 0. It is important to note that the correlation coefficient

is a measure of linear association. Two parameters may be deterministically

related, but non-linearly, and have an r,, other than *1.

Means and Standard Deviations of Calculated Parameters

Means and standard deviations are used above to describe best estimates
and uncertainties about measured properties., Correlation coefficients are
used to describe association among properties or amonag uncertainties in
properties. For engineering analysis, measured properties are sometimes
transformed mathematically to ohtain desired input parameters for engineering
models. Deformation might be used to calculate elastic moduli, or in situ
stresses and measured strengths might be used to calculate normalized soil
properties.

The mathematics needed for relating a second-moment description of soil
properties, 1loads or other measurements to a corresponding second-moment
description of calculated results are relatively uncomplicated. Some equation
is chosen for calculating the results of interest. For example, to calculate
elastic modulns from stress and strain measurements the equation would be
E = 7/+, in which 7 = stress and * = strain, Next, means, standard deviations,
and correlation coefficients are evaluated for all the input parameters., 1In

the example, the input parameters would be stress and strain, and the
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v corresponding statistical moments would be mg, mg, S5, S¢, and rge. Then these
4

n: means, standard deviations and correlation coefficients are used in conjunction

N ;
:} with the equation to determine resulting means, standard deviations, and

- !
" correlation coefficients (if applicable) on the calculated result(s). In the ;
4
}: example, the result is the scalar value E,.
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'{ Mean of a Calculated Parameter
s Operationally, mean soil properties are propagated through an equation

.

j using a first-order approximation. This is a linear approximation in the

-.. 2 .

-~ vicinity of the best estimates of the soil properties, Mathematically, the
L)

4
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calculation of some result y based on a soil parameter x can be expressed as a

.
l-' L 4

oo et

function,
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y = glx) . (rn

[ ]

By taking a Taylor's series expansion of g(x) at the point my and then
truncated all but the first two (i.e., linear) terms, the tangent at m, is

obtained (Fig. 7). For most qeotechnical purposes this linearization is

4
[
I =
B, sufficiently accurate. For strongly nonlinear cases, other methods are
"W
n
- available, These are discusserd in the report, "Error analysis for geotechnical
'
o . . . o
- engineering,”" (Controact Report 1.-87-3}. Applyina rudimentary probability
.
‘.-u
% theory leads to the convenient result,
7/
K. - mo=Aalm ) , (12)
Y «
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:f in whish = inldicates first-arder approximation. In wonr-s, the mean or best
,
=
7 pastimate of the rosult v is thae fanction »f the mean or bhest estimate of
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: the parametar x, This in the common Adeterministic solution, usina the
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o best-estimate or mean soil property as input. In the example above

j% mp = mg/mg (see Plate 1).

)

) Standard Deviation of a Calculated Parameter

b

‘ By similar reasoning, standard deviatons on input soil properties x may
-

] also be propagated through an equation y=g({(x) to find a corresponding standard
;j deviation on the calculated parameter y. The first-order approximation leads
A8

to the relation
W)
.
- (X
Y s, (dx] Sy (13)
¢

S in which the derivative dy/dx can be thought of as an influence factor. 1In
¥

hY
o
o words, the standard deviation of the prediction y is the product of the
,".“,

‘O

N standard deviaton of the parameter x and an influence factor equal to the
’
{

o derivative of y with respect to x. For modulus calculated from an uncertain
g

':_ stress but known strain, sg = (dE/do)so. The relation is exact when g(x) is
:

s linear.

oy

*, When the prediction y depends on a set of parameters, x ={xq,...,xg}, the
‘o)

" equivalent forms of Eqn. 12 and 13 are,

W

..l.

o m, = glmy ,...,my ), (14)
\' 1 n

-’:
-
155 . - d d
sy2 2 rr-Toc, (15)
3 dx; X5 i'"5
159

-@ i

Note, when the Xj,X4 are independent, C, , X =0 for i#j and c, ,x =Sx ‘=Vx for
i j i 3 i i

. f o

df i=j, thus,
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e vy =z [Z]2 v, (16)
)

2 dx;

.
b M
4 The example calculation of modulus from both an uncertain stress and an
by uncertain strain is carried out in Plate 1. Two special cases deserve note
e

AN s

150, because they are common in practice and lead to simple results. For the case
o
. in which y is a linear combination of a set of independent parameters y = Zaixi
ER
Wt
Lo the variance of y is exactly,
1"‘
.’c = T 2
:. Vy = asc Vyi (17)
Y For the case in which y is a power function (product) of a set of independent
S :
i:: parameters, y =ig1xia1, the coefficient of variation of y is approximately,
%
o 1+Qy2 = I (1+a;°2,2) (18}
! i

N
N which for small coefficients of variation (e.g., less than 30%) reduces to,
‘o
AN
Aty
B

o} P2, =T az? 0%;. (19)

'.‘\J\

¢y
e Regression Analysis
ﬁg When two soil properties or parameters are associated with one another,
Y
o their correlation coefficient can be used to predict one property or parameter
iy
;f from the other., This is done with reqression analysis. Reqression analysis
o
-
‘“j is used to fit lines or curves to data, For example, reqgression analysis can
.
¢ be used to estimate undrained strength of a saturated clay from water content,
3
N The common criterion for fitting tcend lines or curves to data is by
[
i) minimizing the sum of squared residuals off the trend. This is called the
L) w:
]
~
N
o
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o least-squares fit. The cone penetration resistance data shown in Fig. 8 appear
.
:,"_ to increase more or less linearly with depth. Mathematically, this trend in
.-:: the data can be expressed as,
' ‘.
<)
Y y = a + bx (20}
e
.\::'
:-C. in which y = undrained strength, x = log water content, and a and b are
¥
N constants. The constant a is the intercept at x = 0; b is the slope.
N
N,: The problem of trend fitting is to estimate the coefficients a and b from
o,
e
J ! a set of n data pairs (y;,xj) such that the resulting trend line is 'best.'
NG
h
" Under the least-~squares criterion a and b are estimated such that the sum of
* %
S the squared residuals in the y-direction, ui=[yi-(a+bxi)]2, is minimized. The
v
.
.'-I: values of a and b which minimize the sum of squared residuals provide the best
Ny
Ane
»
A prediction of y for a given x, and can be shown to be (Benjamin and Cornell,
,{:: 1979),
- (Ix.2)(Z Ix,)(E
K+ -
A . xj ( yi) ( xi)( xiyi) '
) a = (21)
n (Ix32) - (Ix3)2
o~
)
ot n{Ix.,y.,) - (Ix )(Ix,y,)
¢ R s
e b = i1 i i ) (22)
s n(Ixs?) - (Ixg)?
o
ey
o The variance of the residuals is
e
o
R 1 bl 112
h Vu = n-2 z [Yi - (a+bxi)] (23)
@
B
| Pl
P This best fitting line to the data of Fig. 8 is shown in the Fig. The two

S —
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:3: envelopes about the line are +/- one standard deviation s, = /Vu,
iu upper envelope: y = a+ bx + s, (24)
-
L R -
%3 lower envelope: y = a+ bx - s, (25)
{
’{. In regression analysis the best fitting line is chosen to be that which
s
ol
g¥ minimizes squared deviations of data in the y-direction (i.e., vertically).
&Y This is the line which gives the best estimate of y for a known value of x. If
:* the reverse prediction were desired, that is the best estimate of x for a known
Al
!3 value of y, then a different regression line would give the best result. To
w
L predict x from y the best line is that which minimizes squared deviations of
| ]
':{ data in the x-~direction. This is found by interchanging x's and y's in Eqgns.
r-
o
A 20 through 23.
951
N Non-linear trends are fit to data in much the same way as lines are,
A\
5; Typically, a direct least squares fit is used, sometimes after a
X
i transformation of the data to fit a linear model, For example, exponential or
)
D8

power functions can be transformed through the logarithm,

iz

T
~
il
[+7]
%
o

(26)

A

Iny = 1lna + b ln x (27)

gl
¢l

-

and then a linear regression fit to lny:1nx. This is a common approach,

oy

although statisticians usually warn that a transformation of data such as this

implicitly alters some statistical assumptions underlying regression analysis

SO Yo

(Snedecor and Cochran, 1980). For example, with linear regression analysis the

(AN
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scatter of the data about the best fitting line is assumed to be the same all

o !

along the line. If regression analysis is applied to the logarithm of the data
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and the same equations 21 and 22 are used to estimate regression coefficients,
then the scatter of the logarithm of the data, not the data themselves, is
implicitly assumed to be the same all along the line. In many--but not
all--cases the transformation of a non-linear relation to a linear one causes

few difficulties.

Shortcut Estimates

In a number of situations faced in the field, quick but only approximate
estimates of means, standard deviation, or correlation coefficients are desired
from limited numbers of data. Shortcut techniques are available for this
purpose., These provide savings of time and effort while often causing only

minor losses of precision.

Shortcuts for Estimating the Mean

An easy, quick, and often good estimate of the mean can be obtained from
the median. The median is the middle value of a data set. It is that value
which is larger than half the measurements and smaller than the other half.

For example, if, say, five data are listed in ascending order 6,9,10,12,15, the
median is 10, For an even number of data, say 6,9,10,12,15,16 the difference
between the two middle data is halved to give the median, that is (10+12)/2=11,
For data scatter which is symmetric about its central value and for small
numbers of data, the sample median is actually a good estimate of the mean. On
the other hand, if the data scatter is asymmetric--for example, if there are
many small values and a few large values--the sample median is not a good
estimator of the mean.

A second shortcut for estimating the mean is by taking one-half the sum

of the largest and smallest measured values, (1/2)(Xpmax * Xmipn). This
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:b estimator is sensitive to the extreme values in a set of measurements, and
A\
:: thus fluctuates considerably. It is not a good shortcut estimator and should
e
< only be used with caution,

.

W - : .

i Shortcuts for Estimating the Standard Deviation

v A useful estimator of the standard deviation from small numbers of tests

i

KA is the sample range wx='xmax'xmin" The range is the span of data from

hn

;: largest to smallest., Like the standard deviation, the range is a measure of

y{ dispersion in a set of data. However, the relationship between the standard

- deviation and the sample range, on average, depends on how many tests are made.
2

. To obtain a best estimate of s, from the range of data w, a multiplier N, is

a4

2

.b used which depends on sample size (Table 1). The best estimate of the standard
: deviation is s, ¥ Nyw, (see Plate 2},

)

. As for the sample median, the range is a good estimator of the standard

-

K deviation for small n and symmetric data scatter., Even for modest n it remains
¢
A

;2 fairly good. However, for asymmetric data scatter the range, which is strongly
.::' affected by outliers, is not a good estimator of the standard deviation.

\[«

" Fortunately, with the notable exception of hydraulic parameters such as

; permeability, most geotechnical data display symmetric scatter. In the case of
N

% hydraulic permeability data a logarithmic transformation usually makes the data
Y
ir scatter symmetric, and again the median and range become convenient

4+

q

. estimators.

0

Al
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> Shortcuts for Fstimating the Correlation Coefficient

- Calculation of correlation coefficients by Fan. 8 can be tediocus. A

v

:f simple and quick approximation is obtained qraphically from the shape of the

>

L

‘< scatter plot of y vs. x. The method works well whenever the outline of the

s

-~ scatter plot is approximately elliptical, and works even with small numbers of
*: &

A v

»
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data. Using Chatillon's (1984) term and procedure, this is called the balloon

method:

STFP 1: Plot a scatter diagram of y vs. x.

STFP 2: Draw an ellipse (balloon) surrounding all or most of the
points on the plot.

STEP 3: Measure the vertical height of the ellipse at its center, h,
and the vertical height of the ellipse at its extremes, H.

STEP 4: Approximate the correlation coefficient as: Iy * Y1 - (h/H)? .

An example of the method is shown in Fig. 9. For these data the balloon method
gives a correlation coefficient of 0,81, whereas the correlation coefficient

calculated hy Egn. 8 is 0.83, Fmpirically, the method works well for rxy>0.5.

Shilling (1984) has suggested a similar method for approximately
estimating the correlation coefficient. The principal difference from
Chatillon's method is that the data are normalized by their standard deviation

before being plotted:

STEP 1: Plot a scatter diagram of (y—my)/sx vs. (x—mx)/sy.

STEP 2: Draw an ellipse surrounding all or most of the points on the
plot.

STEP 3: Measure the length of the principal axis of the ellipse
having positive slope, D, and the length of the principal
axis of the ellipse having negative slope, 4.

STEP 4: Approximate the correlation coefficient as Tyy =(D2-d2)/(D2%+a%).

This methods works about as well as Chatillon's. For the data of Fig. 9

Shilling's method qgives Txy = 0.80.
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Multiplier for Estimating Standard Deviation from Sample Range
(from Snedecor and Cochran, 1980)

Sx ® Np (Xpax = Xmin)

n Multiplier N n Multiplier Nj
2 0.886 12 0.815
3 0.591 13 0.300
4 0.486 14 0.294
5 0.430 15 0.288
6 0.395 16 0.283
7 0.370 17 0.279
8 0.351 18 0.275
9 0.337 19 0.271
10 0.325 20 0.268
11 0.315

- - - -~ A= = == = . T e = . b A = e = T = = - - - -

Table 1. Multiplication Factors for Fstimating Standard Deviation
from The Rande of Sample Data (After Snedecor and Cochran,
1980) .

31

AT N R S
EXNY) 'lvj‘}‘ql't ,‘|‘l .F,'ﬂ“« ,‘i'h AT .



RAAAAF

|

L5 %

_ }'

P4

-

- -

v
Y
[}
M
93
V(s
®

Py P M A A Al e ae

PLATE 1
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SUBJECT: Error analysis of modnlus calculation from laboratory data.

s i is:zsssasassasssciiissscsiciisaztiazacomcazaisasaesccatarazizazaiazaT s

PROBLEM: Calculate constrained modulus from laboratory measurements of
stress and strain

SOLUTION:
DATA: Initial stress 05 = G0 psi 350 = 2 psi
Stress increment A0 = 5 psi 5p = 0.5 psi
Measurad strain € = 0,096 Sg = 0.01

BEST ESTIMATE OF CONSTRAINED MODULUS:
E = 0/€
Mg = mg/Mg
= 5 psi / 0.096 = 52 nsi,

UNCERTAINTY (STATNODARD DEVIATION) OF MODULUS:

0N
m
lle

(4E/d0 )¢ Spgl + (AE/de)? sgl

(1/6)2 SAGZ + (-0/22)2 SEZ

1l

(1/0.096)2 (0.5 psi)? + (-5 psi/0.0962)2 (0.01)2

= (7.5 psi)? ”

232f7 yns i
=
3 i
= |
P '

|

i -

510, Hpsi

Stress

Lt?l",t’g-':'1-I!"1"tr""!'l‘ll"xs,.-’s-:'xa:zzrx'--1zt-ﬂr-‘ll-‘!::x-.'-n-l:-.‘
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0'1'
DE: PLATE 2
x
.l
g
S SUBJECT: Shortcut estimates of summary parameters.
o A] DATA:
:: Test Number Measured Strength
e (kPa)
s 1 38
. 2 51
l_‘
.;,: 3 43
:.:: 4 39
oy 5 48
+
W, 6 45
PN 7 42
_ 8 45
T 9 49
&
7
w B] ESTIMATE MEAN:
L.t
! 3y Equation 2 Shortcut Method Using Median
-
[ 1
o my, = ;Z Xi me =~ median of x4
42 = 45 kPa
W8 1
. = — (400 kPa)
A 9
4
" = 44.4 kPa
-
)
)
.J C] ESTIMATE STANDARD DEVIATION:
v"
U
B
:l By Equation 3 Shortcut Method Using Range
%,
o
:" 1 2
i Sx = -7 Z (xg-my) w = (Xpax = Xmin)
= 51 - 38 kPa
> = 13 kPa
8
Ko
A
2 - 4.2 kpa Sx = Nn vn
\,, From Table 1, Ng = 0,337

(0.337) (13)
= 4.4 kPa
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Sources of Error or Uncertainty
in Soil Property Estimates.
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PART III: SPATIAL VARTATION AND DATA SCATTER

- Soils are geological materials formed by weathering processes and, except
for residual soils, are transported by physical means to their present

SRS locations. They have been subject to various stresses, pore fluids, and

physical and chemical changes. Thus, it is hardly surprising that the physical

r "
-.‘}A' -.’-.

-
»
-

% =\

properties of soils vary from place to place within resulting deposits.

Y
-

The scatter observed in soil data comes both from this spatial variability

>
*
a\\ and from errors in testing. Each of these exhibits a distinct statistical
o
signature which can be used to draw conclusions about the character of a soil
LY
k> -F\
o deposit and about the quality of testing.
:4::
“}; Part 1II presents the tools required to interpret the structure of spatial
:.n
- variation, and to draw conclusions about the impact of spatial variation on
BTy
*rb engineering calculations,
»" ‘.-
TN
~
,ﬁh. Trends and Variations About Trends

gy

?‘J

In Part II, means and standard deviations were used to describe the

65

X

variability in a set of soil property data. These are useful measures, but

ey

they combine data in such a way that spatial information is lost. To describe

the variation of soil properties in space, additional tools are needed.

3%

i
N - . . .

q} Consider the two sequences of hypothetical measurements shown in Figs. 10a
~7

S
:Q§ and 10b. Presume that each measurement was made at the same elevation, one in
[ J
S each of nine consecutive borings along a line. These two sets of data have the
oy
u{{ same mear. ind standard deviation, but clearly reflect dif “erent soil
e

L conditions. The first data exhibit a distinct horizontai trend, the second are
- @
:3 ” erratir~. This difference cannot be inferred from the mea-n and standard
% o .

t, deviation alone, for they are the same in hoth cases.

L]
L:& In . ~inciple, tne spatial variation of a s0il deposit can be characterized
. ,:.
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'b& in detail, but only if a large number of tests is made. In realitv, the number

B

U

¥

kﬂ of tests required far exceeds that which would be practical. Thus, for

Ay,

L engineering purposes a simplification is introduced--that is, a model--within

1458,

o

‘ which spatial variability is separated into two parts: (i) a known

Y 5

"oty deterministic trend, and (ii) residual variability about that trend. This

0

S

' model is written,

n.',;

“':"

. = . .

A j xj = tj + uy, (28)

R

. in which x; is the soll property at location i, tj is the value of the trend at

D

R o i, and uj; is the residual variation. The trend is characterized

1y

;\& deterministically by an equation. The residuals are characterized

0

statistically, by a mean, standard deviation, and something statisticians call

=
A
>

-
")

e an autocorrelation function. Rather than characterize soil properties at every
-jﬂ point, data are used to estimate a smooth trend, and remaining variations are

0

x_? described statistically.

oy

.h The residuals are characterized statistically because there are too few

»

*h. data to do otherwise, This does not assume soil properties are random; they

[ N

are not., While statistical techniques provide a convenient way to describe

o

ﬂj’ what is known about spatial variation, one has always to be wary that grouping
o

)y

LSl
.f' data together does not mask a real and crutial "geological detail."

L W

o

- Estimating Trends

«
fxf Trends are estimated by fitting well-defined mathematical functions
*\'.'

o (i.e., lines, curves, or surfaces) to data points in space. The easiest way
s
1 to do this is by regression analysis as outline in Part II. For example, Fig.
o
u;x 11 shows maximum past pressure measurements as a function of depth in a deposit
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of Gulf of Mexico clay. For geological reasons the increase of maximum past
pressure with depth is expected to be linear within this homogeneous stratum.
Data from an overlying dessicated crust are not shown.

The equation for the trend of maximum past pressure 0;&, with depth z is

0g' = a + bz + u (29)
vm

in which a and b are regression coefficients (intercept and slope), and u =
residual variation about the trend. Applying Egqns. 21 and 22 to the data

leads to

a = 3 sf (30)

0.06 ksf/ft (31)

o
n

for which the corresponding trend line is shown on Fig. 11, For data analysis
purposes, the regression line mcém = 3 + 0,06z is the best estimate or mean of

the maximum past pressure as a function of depth.

Residuals About Trends

Residual variation not accounted for by the trend is characterized by a
standard deviation or variance. Ry the procedure through which the trend is
fit, the residuals must have zero mean. The variance of the residuals is
calculated by Eqn. 23 to be V, = 1ksf?, This is the variability of oy .’
unexplained by the trend line. Plus and minus one standard deviation bounds
with depth are shown in Fig. t1. The standard deviation s, is the uncertainty
in maximum past pressure at any elevation. This is the

uncertainty in Oém at a point in the soil deposit caused by modeling spatial

variation with a smoothly varying trend, here the line of Fqn. 29, Presumably,




the standard deviation of the residuals is the same everywhere alona the line.
This is an assumption of the least squares fitting procedure. TIlsually this
assumption is qood, but it can be relaxed if necessary (Johnson, 1960).

Another assumption in fitting trends is that residual variations are
unrelated (i.e., independent) from one place to another. 1In fact, this is
seldom the case for geotechnical data. Fig. 12a shows residuals which have
been artificially generated to be independent from one to another. Fig. 12b
shows residuals typical of most soil data. TInspection shows a difference in
character. The first set appears 'erratic;' the second, ‘wavy.’

The waviness of residual soil data reflects spatial structure that is
ignored in the regression analysis. If a measurement at depth i in the
profile lies above the average trend with depth, as a general rule
measurements at adjacent depths also lie above the trend, and vice versa.

This is called 'autocorrelation.' The longer the apparent 'wave length' of
the residuals the farther autocorrelation extends.

More forma.ly, autocorrelation is the property that residuals off the mean
trend are not statistically independent, and that the degree of association
among them as measured by the correlation coefficient depends on their relative
separation in space.

Correlation was introduced in Part II. Correlation is the property that,
on average, two variables are associated with one another. Knowing the value
of one provides information on the value of the other. The strength of such
association is measured by a correlation coefficient, ranging between plus and
minus one,

In the same way that two variables of different types can be related

(e.q., water content and undrained strenqgth}, so too can values of the same |

44,
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.
U ‘
B |
Fif) |
(S
Yoo variable at different locations. For example, Fig. 13, shows standard
#:f
“U; penetration test (SPT) blow counts as a function of depth. In the horizontal
S
' " direction these blow counts have an approximately constant mean, therefore
1 ’\':\ |
Ay detrending is not needed. In Figs. 14a,b,c the blow count data are plotted |
=0
1SN ;
o against one another. The horizontal axis records the blow count at location i; !
il .-
b{) the vertical axis records the corresponding blow count at a location separated
o
x?- by © from location i. When ° is larqe as in Fig. 14c, the correlation between
’s.::::
;&: uy and uj,¢ is slight. However, as ’ becomes smaller, as in Fig. 14a, the
R -
) correlation increases. As ‘+0, naturally, the correlation approaches +1.
e
‘:f Plotting the correlation coefficient so obtained as a function of separation
.
2 {; distance 3 gives the autocorrelation function, denoted Ry,(8). Plotting the
)
correlation coefficient multiplied by the data variance (i.e., the covariance ‘
e
e |
:}: of Equation 9) gives the autocovariance function, denoted C,(8). The
o !
T autocovariance is shown in Fig. 15a. |
e
ﬂ . The effect of correlation structure on residual variation can be seen in
I
" 5: Fig. 16 in which four cases are sketched schematically. Spatial variability
ot

22

about a trend is characterized by variance and autocorrelation. lLarge

P

v

variance implies that the absolute magnitude of the residuals is large; large

k) ’:

o e
:,: autocorrelation implies that the 'wave length' of variation is long.

-’

o

> ;

- Trends vs, Residuals

@

. -.w;‘-‘

A As can he seen from the preceding section, the division of spatial
“Zt variation into a trend and residuals about the trend is an artifact of

analysis. By changing the trend model fit to data, for example, by replacing a

lirnear trend with a polynomial, the variance and autocorrelation function of
the residuals can he changed almost arbitrarily. From a practical view the

selection of a trend line or curve is in effect a decision on how rmuch of the

37
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data scatter to model as a deterministic function of space, and how much to
treat statistically. Dividing spatial variability into a deterministic part
and a statistical part is a matter of practicality. Prudence requires that
each datum be judned for what it might say about a soil deposit, but
engineering analysis requires models of soil properties for makinag predictions,
As a rule of thumb, trend surfaces should be kept as simple as possible
without doing injustice to a set of data or ignoring the geologic setting. The
problem with using trend surfaces that are very flexible, as for example high
order polynomials, is that the number of data from which the parameters of
those equations are estimated is limited. The more parameter estimates that a
trend surface requires, the more uncertainty there is in the numerical values
of those estimates. IIncertainty in regression coefficient estimates increases
rapidly as the flexibility of the trend increases. Uncertainty in regression

coefficients is discussed in more detail in Part 1IV.

Autocorrelation and Autocovariance

This section presents a more mathematical treatment of autocorrelation and
autocovariance. If x3 = t; + uj is a continuous variable and the soil deposit
is zonally homogeneous, then at locations i and j, which are close together,
the residuals uj and uj should be expected to be similar. That is, the
variations reflected in uy and uj are associated with one another, When the
locations are close together, the association is usually strong. As the
locations become more widely separated, the association usually decreases. As

the separation between two locations i and j approaches zero, uj and uj become

5

the same, the association becomes perfect. Conversely, as the separation
becomes large, uj and uy become independent, the association becomes zero.

This spatial association of residuals off the trend t; is summarized by a
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mathematical function describing the correlation of uj and uj as the separation

* increases, This description is called the autocorrelation function. In

concept, the autocorrelation function is a mathematical way of summarizing the
correlations shown in the scatterplots of Figs. 14a,b,c. Mathematically, the

autocorrelation function R,(") is

. 7 - =t
Re(") = (ng-k) L (xlszi](x;x 3] = vautocorrelation function" ,  (32)

in which ng the number of data pairs having separation distance &8, and k =
the number of coefficients needed to define the trend model (e.g., the
parameters a and b in Eq. 29). R,(6) expresses the correlation of two
residuals off the trend surface as a function of their separation distance. By
definition, the autocorrelation at zero separation distances is Ry, (0)=1.0,
Empirically, for most soils, autocorrelation decreases monotonically to zero as
§ increases.

If Ry(3) is multiplied by the variance of the residuals Vy, the

autocovariance function is obtained, as shown in Fig. 15,

Cx(8) = R (3)V,, = Trautocovariance function” . (33)

The relationship between the autocorrelation function of Eqn. 32 and the
autocovariance function of Eqn. 33 is the same as that between the correlation
coefficient of Eqn. 8 and the covariance of Egn. 9.

Consider the site shown in Fiq. 17 which overlies an hydraulic bay fill.
SPT data taken in the silty fine sand between elevations +3 and -7m show little
if any trend horizontally, and so a constant trend at the mean of the data is
assuned, Fig. 18 shows the histogram of SPT data. Pia. 19 shows

autocovariance functions in the horizontal direction estimated for three

intervals of elevation. At short separation distances the data show distinct
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o association, i.e., correlation. At laraqe separation distances the data exhibit
g
- .
= essentially no correlation.
S,
’ . . ) . :
Y In natural deposits, correlations in the vertical irection extend to much
ateAoN
v
SN shorter distances than in the horizontal direction. A ratio of about one to
LY i
{fi ten for these correlation distances is common, Horizontallv, autocorrelation i
Rt
‘_) may be isotropic (e.qg., Rx(&) in the north-south direction is the same as
Al
\ N
Ry(3}in the east-west direction) or anisotropic, dependina on geologic history;
{jw
g : however, in practice, isotropy is often assumed. Also, autocorrelation is
(he )
. typically assumed to be the same everywhere within a deposit. This assumption, i
g 1
ol ce
‘bﬁ called stationarity, is equivalent to assuming that the deposit is
ff{ statistically homogeneous.
h%
It is important to emphasize that the autocorrelation function is an
~’:'..
M artifact of the way soil variabhility is separated between a 'trend' and
-
’ j\ 'residuals.' Since there is nothing innate ahout the chosen trend tj, and since
(-
{ changing the trend changes Rx(ﬁ), the autocorrelation function reflects a
v,
modeling decision. The influence of changing trends on Cx(&) is illustrated in
M
&
’N Figs. 20, 21 and 22, showinqg data analyzed by Javette (1983)., Fig. 21 shows

autocorrelations of water content in San Francisco Ray Mud within an i...erval

e )3

-
E of 3 ft. Fiqg. 22 shows the same autocorrelation function when the entire site
s
“}: is considered., The difference comes from the fact that in Fig. 21 the mean
‘e
@ trend is taken locally within the 3 ft. interval. In Fig. 22 the mean trend is

taken globally across the site. The schematic drawinag in Fig. 23 suqaests why
the autocorrelations should differ,

Autocorrelation can be found in almost all spatial data which are analvzed
using a model of the form of Ean. 2R, For example, Fia., 24 shows the

autocorrelation of joint (i.e., rock fracture) densitv in a copper porphvry
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o deposit; Fig. 25 shows the autocorrelation of water content in the compacted
1y
A clay core of a rock fill dam; Fig, 26 shows the autocorrelation of cone
AN
B~
N penetration resistance in North Sea Clay. 1In mining, the importance of
-h;‘-' ) )

7 autocorrelation to ore reserve estimates has been recognized for many years.
4
.-:_‘.f In mining "geostatistics" a complimentary function to the autocorrelation
L
-f{-f' R . X
E function, called the variogram (Matheron, 1971), is more commonly used to
£t
J~.;J' .

e express the spatial structure of data. The variogram requires a less
s

O restrictive statistical assumption on stationarity than the autocorrelation
AN function requires and is therefore often preferred for estimation problems. On
D .:;.

o the other hand, the variogram is sometimes more difficult to use in engineering

]

»y
f.x: analyses, and thus for geotechnical purposes the autocorrelation is more

"W
o

N
‘o commonly used. 1In practice, the two ways of characterizing spatial structure
".;‘:.

{’r, <4 are quite similar.

.

,,-:-,- Estimating Autocovariance and Autocorrelation
o
Yo% : . : :

" This section considers only a straightforward and often used approach to
3 estimating autocovariance and autocorrelation, the 'moment estimate.' For more
Ay
e detailed discussion of statistical aspects of estimating Cx("), including more

“‘

"‘

TN A : i
T efficient estimators, see Appendix A,

g
® Consider the simple case of measurements made at equally spaced intervals

|

'-":"’
~a along a line, as for example in a boring. Presume that the measurements x =
L. - =
'-‘.\

B "x1,...,xn? ara unaffectad by measurement error., The autocovariance of the
|

B e a

@ measurenents at separation © is,

T

"

- 3

'..':‘. : : L

:.'_“: r:x( ) = — (x5-ty) (g -ty (34)
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N =525 & (i) lujas) (35)
Fy M
e
B This autocovariance is called the 'sample autocovariance,' and it is used as an
:_ estimator of the real autocovariance at separation distance §. The real auto-
4
i covariance is that which wm1'd be obtained if the true values of soil proper-
i.'
ﬁ? ties at every point in c:1'e were known., The general expression of the sample
o2,
autocovariance for any arbitrary distance § is,
$
Y
A N
S s L v
- c (%) TR (x3-t3 ) (X548-t148) (36)
}.
o 1 )
2 = ;ng_ Lo (ug)(ujug) (37)
5
<
.-:'fl . < <
W, in which ng = the number of pairs of data at separation distance ¢, and k = the
i
i number of parameter estimates required for the trend., For n uniformly spaced
A X
HE
! data on a line with constant-mean trend, ng = n-§ (because there are n-$ pairs
N

of data with separation distance §) and k=1 (because only one coefficient is
needed to define a constant mean).
X 4 In the general case, measurements are seldom uniformly spaced and, at

least in the horizontal plane, seldom lie on a line. For such situations the

"[ sample autocovariance can still be used as an estimator, but with some

4

f:: alteration. The most common way to accomodate non-uniformly placed

-

o measurements is by dividing separation distances into bands, and then taking

the averages of Eqn. 36 within those bands (Fig. 27). This introduces some

bias to the estimate but for most engineering purposes it is sufficiently

accurate.
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) Measurement Noise
R
NN .
(L= o Random measurement error is that part of data scatter attriputable to
NN
S
b . . .
F,: instrument or operator induced variations from one test to another. This
(1
v variability may sometimes increase a measurement and sometimes decrease it, but
M x
"tﬁ its effect on any one, specific measurement is unknown. As a first
e
N
S
A approximation, instrument and operator effects on measured properties of soils
‘l LA-
" - s s
can be represented by a frequency diagram as shown scheratically in Fig. 28,
l' -
\j* In repeated testing--presuming that repeated testing were possible on the same
'.f-
mo
\:' specimen--measured values differ. Sometimes the measurement is higher than the
b
A
Al
.'A : s
real value of the property, sometimes it is lower, and on averaqe it may
prop
. ’ D,
%l
,ﬁi systematically differ from the real value. The svstematic difference between
P
"
o . .
wJ\ the real value and the averaqge of the measurements is said to be measurement
A
g
‘ bias, while the variability of the measurements about their mean is said to be
‘{.. random measurement error,
A8y
1
»
:}¢: Sources and Character of Random Measurement Frror or Noise
:) Random errors enter measurements of soil properties throuqgh a variety of
Ry
: ;Q sources related to the personnel and instruments nsed in soil investigations
3 $.
ﬂg? or laboratory testing,.
o\
o, NOperator or persornel errors arise in many types of measurements where
. 1
A5n!
4 lk reading scales is necessary, personal judgement is needed, or operators affect
" '
s
”{ the mechanical operation of a piece nf testing equipment (e.q., SPT hammers).
2 o+
- @
< In each of these cases operator Jdifferences have systematic and random
\'.'.
- f-
;:m components., One person, for axample, may consistently read a gage too high,
SN
Ca
s
‘;3 another too low. Tf reqgquired to make a series of replicate measurements, a
i a
Ay sinqle indivi-unal may report numbers which vary one from the other over the
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series. Figure 29 shows histograms of strike and dip measurements made by many
people on the same rock joint, using the same Brunton compass.,

Such variability is common and widely recognized, and as soil testing
moves to more and more automated procedures, this operator variability will
decrease. With hand operated field vane devices an operator may unconsciously
vary the rate of torque from one test to another, thereby influencing measured
undrained strengths., With an automated vane such variability is lessened.
Naturally, operators also sometimes make mistakes, 1If these mistakes are small
and not easily identified by inspection, they too become random measurement
errors.

Instrumental error arises from variations in the way tests are set up,
loads are delivered, or soil response is sensed. The separation of measurement
errors between operator and instrumental causes is not only indistinct, but
also unimportant for most purposes. In triaxial tests soil samples may be
positioned differently with respect to loading plattens in succeeding tests.
Handling and trimming may cause differing amounts of disturbance from one
specimen to the next. Piston friction may vary slightly from one movement to
another, or temperature changes may affect fluids and solids. The aggregate
result of all these variables is differences between measurements that are
unrelated to the soil properties of interest.

Assignable causes of minor variation are always present because a very
large number of variables affect any measurement. One attempts to control
those which have important effects, hut this leaves uncontrolled a large number
which individually have only small effects on a measurement. These assignable
causes of variation if not identified may influence the precision and possibly

the accuracy of measurements by biasing the results.
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For example, hammer efficiency in the SPT test strongly affects measured blow
b counts., Efficiency with the same hammer .an vary by 50% or more from one
i
N blow to the next (Kavazanjian, 1983)., Hammer efficiency can be controlled,
y but only at some cost. If uncontrolled, it becomes a source of random
L
X
1 measurement error and increases the scatter in SPT data.
. Models for Measurement Error
N
' Random measurement errors are ones whose sign and magnitude cannot be
)
: predicted, they may be plus or minus. Typically, random errors tend to be
K, .
: small and they tend to distribute themselves equally on both sides of zero.
8
" Measurement error is the cumulative effect of an indefinite number of small
i 'elementary' errors simultaneously affecting a measurement.
l: The common model of measurement error is,
‘l
\ zZ =X + e , (38)
)
;f in which z is the measurement, x is the soil property being measured, and e is
b
’ a random error of zero mean. Were systematic errors present, the mean of e
D .
o would differ from zero.
K An important property of e in Eqn. 38 is that it is assumed statistically
N »
) |
" independent from one measurement to another and to have the same mean (i.e., 0)
" and variarce Vo for each measurement. The value e takes or at one measurement
. is assuned to be unrelated to the value it takes on at any other. This has
important practical implications; for example, it means thet if many
|l
: measurea.ts are averaged together to estimate a property, measurement noise
averaqges onut,
Random measurement error can be estimated in a variety of ways, some
- direct ard some indirect. As a qeneral rule, the direct techniques are
o 55
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difficult to apply to the soil measurements of interest to geotechnical
engineers. Nevertheless, direct techniques provide insight into the nature of
random errors. Indirect methods, on the other hand, are generally more

practical.

Direct Estimation of Measurement Noise

The traditional way of estimating random measurement error is by
replicate testing. The same property is measured repeatedly on the same
specimen and the results compared. An example was shown in Fig. 29 with
replicate measurements of joint strike and dip. Presumably, the property
being measured does not change from test to test, so the variability observed
in test results comes from random errors.

Replicate testing is a simple, direct, and accurate way of establishing
random measurement error. Unfortunately, it is seldom of use because the
properties engineers are most interested in are measured destructively.
Performing the same test on different specimens, no matter how closely together
they were sampled in the field, always leaves unanswered how much of the
variability is due to measurement and how much to real differences in the

soil.

Indirect Estimation of Measurement Noise

Indirect methods for estimating V, usually involve correlations of the
property in question either with other properties such as index tests, or with
itself through the autocorrelation function. The easiest and most powerful
methods involve the autocorrelation function. Combining Eqns. 28 and 38,

data are represented as
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zZyg = t; + uy + ey . (39)

The autocovariance of z in Eqn. 39, after the trend has been removed, becomes

cz(d) = cx(é) + Cgo(8) (40)

in which CX(S) is from Egqn. 33, and Ce(G) is the autocovariance function of e.
Eqn. 40 can be verified by substituting z; for xj-tj in Eqn. 32 and
algebraically rearranging. Since e; and ey are independent except for i=j, the
autocovariance function of e is a spike at 8=0 and zero elsewhere. Thus, CZ(G)
is composed of two functions as shown in Fig. 30. By extrapolating the
observed autocovariance function to the origin, an estimate is obtained of the
fraction of data scatter that comes from random error. For the data of Fig.
31, Vo ® 0.5V,. In the "geostatistics" literature this is called the nugget
effect,

For the field vane data of Fiq. 32, the random measurement error
contribution to data scatter is about 20 kPa2, or 40% of the variance. Fig.
33a shows the horizontal autocovariance function of the data in a Fig. 32a.
Fig. 33b shows the vertical autocovariance function. These data are analyzed
by a different and more powerful procedure in Appendix A to yield approximately
the same estimate. Fig. 34 shows the vertical autocorrelation of cone
penetration resistance data in a copper porphyry tailings embankment. Here the
measurenent error is very small.

The importance of random measurement errors is well illustrated by a case
involving a large number of shallow footings placed on approximately ten meters
of uniform sand. The site was characterized by Standard Penetration blow count
measurenents, predictions were made of settlement, and settlements were

subsequently measured (Hilldale-Cunninqham, 1971),
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M Inspection of the SPT data and subsequent settlements reveals an
AN
T gal
}{b interesting discrepancy. Since footing settlements on sand tend to be
e
plLR ]
;{ proportional to the inverse of average blow count beneath the footing, it would
Bt
{ ) be expected from Eqn. 19 that the coefficient of variation of the settlements
)‘.. . .
X e~ualed approximately that of the vertically averaged blow counts.
Il Mathematically, settlement is predicted by a formula of the form,
D4 .
- A i
X o = =3 g(b) (41)
o, N ’
WSS !
-~ 1
,*v in which p=settlement, Ag=net applied stress at the base of the footing,
-$ﬁ N=average corrected blow count, and g(b)=a function of footing width (see,
\ L)
':5: Lambe and Whitman, 1969). herefore, by Eqn. 19 the coefficient of variation
W
L2
n:, of p should be, I
L
) - .
-2, T = Oy . (42) |

In fact, the coefficient of variation of the vertically averaged blow counts is

about Qy=0.44. The observed values of total settlements for 268 footings have i

A
N

{ni* mean 0.35 inches and standard deviation 0.12 inches; so, Qo=(0.12/0.35)=0.34.
JOR .
"‘-';' :
S Why the difference?
e
., The explanation is found in estimates of the measurement noise in the blow
B i
>, :
-123 count data. Plate 3 shows the horizontal autocorrelation function for the blow ;
“a !
P
LAY
\:a count data. By extrapolating this function to the origin, the noise (or hiah
LA !
"': frequency) content of the data is es*imated to be about 50% of the data scatter .
}}: variance. This means tlLat,
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K (9 )2 = (@ )2 (0.5) (43)
e soil data .
. = (0.35)2
':J ( )
7
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‘AN which is close to the observed variability of the settlements. Measurement
/
1
) noise of 50% or even more of the observed scatter of in situ test data,
s
‘W
i* LS particularly the SPT, has been noted on several projects (e.g., Baecher, Marr,
S
8
' Lin, and Consla, 1980; Schmertmann, personal communication, 1986).
':“
.‘
In fact, while random measurement error exhibits itself in the
\? autocorrelation or autocovariance function as a spike at r=0, real variability
l‘ »
‘*h
}i of the soil at a scale smaller than the minimum boring spacing cannot be
)
.t
‘ distinguished from measurement error when using the extrapolation technique.
%
.{Q Thus, it need not be that the 'noise' component estimated from the horizontal
:i{ autocovariance function in the horizontal direction is the same as that
.
¢ estimated from the vertical.
LY . . . .
\{: For many, but not all, applications the distinction between measurement
s,
o|
,{ﬁﬂ error and small scale variability is unimportant. For any engineering appli-
]
M} cation in which averaqge properties within some volume of soil are important,
"
s the small scale variability averages quickly and therefore has little effect on
o
N
o~ predicted performance. Thus, for practical purposes it can be treated as if it
l!.'
By e
A
® were a measurement error. n the other hand, if performance depends on extreme
;}: properties--no matter their qgeometric scale--this unimportance no longer
N
aY
o
'f:. obtains. Some engineers think that piping (internal erosion) in dams is such a
al . _ _
- @ mode of performance. However, few physical mechanisms of performance easily
T
j: come to mind which are stronqly affected hy small scale spatial variabilities,
s
o
::: unless those anomalous features are continuous over a larqe extent in at least
oy
i) .
A one dimension,
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Re jecting Outlier Data

It is often the case with geotechnical measurements that one or more data
differ strikingly from the bulk of the measurements made. This presents the
often difficult question of whether to reject the data as anomalous, or to
decide that they reflect real and important variations in soil or rock mass
properties. The decision that data are anomalous could mean one of at least
two things, (a) that they are thought erroneous, or (b) that they are thought
to be real but unimportant.

The profile of Fig. 35 shows SPT blow count data with depth in a silty
sand deposit. Near elevation 73 in boring SS-56-66 one of the measurements
appears very high (N=12bpf), at least compared to the apparent trend of the FV
strengths with depth. It is certainly the case that this high value may
reflect local variation in soil properties or may reflect an interstratified
layer of much stronger material. However, given that the high value does not
appear in the nearby borings, the likelihood of this high value reflecting real
and important variation in sand strength seems improbable. More likely, the
high value has been caused by a rock fragment or small sand lens, or possibly
by an error. A decision must be made either to treat the measurement as part
of the data set and to include it in the statistical analysis, or to reject it
and remove it from the analysis.

In principle, it may be possible to retrace steps through the
documentation of a testing program to see whether an explanataion for the
unusually large measurement can be found. Yet, unless an extraordinary quality
assurance program has been followed, this tracing often leads to no clear

answer. In such case, the decision to accept or reject the measurement has to
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be made on the basis of the set of data alone, and on the relation of a
particular measurement to the general characteristics of the bulk of the data.
The decision is ultimately subjective. By throwing out an 'outlier' one may in
fact be throwing out the most interesting piece of information about the soil
or rock formation.

In judging whether an extreme value is real and important or simply an
outlier which can be rejected, statisticians prefer to follow some formal
policy whereby the probability of accepting or rejecting the measurement
erroneously can be calculated. A suitable value for this probability is
decided upon, and then an explicit rule for rejecting data is derived.

To decide whether to accept or reject an extreme individual measurement, a

common procedure is to use the quantity

t = Az (44)

in which m, and s, are the mean and standard deviation of the set of
measurements zq,...,2Z,, which includes the suspect value zj. 1If the z are
Normally distributed, the quantity t should have a student's t distributional
form with v=n-1 degrees-of-freedom. Thus, the probability of an individual
measurement deviating as much from the mean as z; does can be evaluated from
tables of the Student's t distribution (e.g., Benjamin and Cornell, 1970),

Some critical probability level a is chosen, usually a=0.05 or a=0.01, and if

:; the probability of a deviation at least as large as observed with z; is less
2 than a, the measurement is rejected, TUsing this rule, the probability of
d
s rejecting a measurement z; which truly is appropriately part of the data set is
a,
\ A1
)
:
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Considering the outlying measurement in Fig. 35, the test value t equals.

12bpf - 3.8bpf

= 3.2 45
2.5ébpf (45)

in which m=3.8bpf and s=2,56bpf. Comparing this value to tables of the
Student's t for n=35 data ( =n-1=34 degrees of freedom), the probability of a
deviation as large as observed is about 0.001. Since this value is smaller
than either common criterion =0.05 or =0.01, the measurement is rejected from
the data set. While the outlier test based on Eqn. 44 is exact only for data
that are Normally distributed, it remains approximately correct as long as the
data are not highly skewed. Therefore, for geotechnical applications it is
usually satisfactory.

A shortcut outlier test, that does not require computing the mean and

standard deviation uses the test value,

- ~ (46)

in which the measurements z4, 25, ..., z, are listed in ascending order. The
quantity (zp=-zp.q) is the interval separating the largest from the second
largest measurement, and (z, ~z4) is the range of the data. Dixon (1953) has
worked out values of corresponding to probabilities =0.05 and =0.01 (Table
2). Por a specific outlier to be tested, the value is computed and compared
to the tabulated value for the chosen level.

The test using , however, only works well with small n (e.g., <10). Were
we to compare the 12 bpf measurement only with other measurements in the upper

stratum of the same boring, of which there are 4, then,
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n n-1 12 - 5
T Tz -z = 2.3 - 077 (47)

which is slightly greater than the critical value for =0.05 and therefore the
measurement is again rejected from the data set.
The critical values of Table 2 also apply to the test of outlier values

to the low end of the data set, using the test value

=—, (48)

in which z, is the second lowest measured value. As with the t-test-value of
Eqn. 44, the r-value assumes the data set to be Normally distributed.

A problem when evaluating outliers on the low and presumablly
unconservative side of a data set is that the risk associated with incorrectly
rejecting an anomalous measurement must be carefully considered. The decision
to include or reject such a measurement often rests more on geological

judgement than on engineering analysis.

Size Effect Factor

The volume of soil influenced by an in situ test, or contained in a
laboratory specimen, is small compared with that influenced by a prototype
structure, To make predictions of how the prototype will perform, one needs
to estimate the properties within this larger, representative volume of soil,
and the variability among such representative volumes.
This is done by assuning the representative volume to be composed of a
large number of small elements, for example, each the size of a test specimen. !

The mean and standard deviation of the properties of small elements are
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evaluated, and then the spatial structure described by the autocorrelation
function is used to calculate corresponding means and standard deviations for
the larger volumes. These calculations are summarized in a size-effect factor,

R, which in many cases can be expressed by simple formlas or can be graphed.

Spatial Averaging

Empirically, the variability of scil properties among small volumes of
soil, say test specimens, is larner than that among large volumes, say the soil
under a footing. Within a small volume, physical properties tend to be more or
less the same throughout. Some individual specimens may have greater than
average properties throughout while some may have less than average, but within
each specimen there is less variability than there is among the average
properties of different specimens, Within large volumes the opposite is true,
there tends to be a mixture of high and low properties in any one volume,

Thus, with small volumes the properties of individual volumes may vary sharply
from the mean across the site, but with large volumes internal variations
balance out such that the average property from one large volume to another
differs very little. The mean of large volumes remains the same as the mean of
small volumes, but the standard deviation of the average property from one
large volume to the next is smaller than the standard deviation of the average
property from one small volume to the next.

The extent of averaging of properties within a large volume of soil
cdepends on the structure of the spatial variation. More precisely, the extent
of averaging depends on the standard deviation of properties from point to

point and on the autocorrelation function.
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;E; The influence of spatial averaging on the variability among average
t element properties can be illustrated by vertically averaging SPT blow counts
igiﬁ in boring logs. Plate 4 shows a set of six SPT boring logs. First, one N
33_% value from each boring is randomly chosen and the mean and standard deviation
‘; ‘ of the 6 values are calculated. The mean is 3.3bpf and the standard deviation
e
;:&: is 2.5bpf. The mean is about the same as before, but the standard deviation
P
;;:? has gone down, Continuing, the greater the number of N-values for each boring
;7 included in the average, the smaller the standard deviation of the 6 boring
E;g averages. The decrease of the standard deviation of average blow count as the
:Siz number of N values included in each average increases is a manifestation of
e

spatial averaging. The larger the volume of soil (i.e., the greater the number
of values in each average) the more the individual fluctuations balance out.
The same thing happens in averaging soil properties within a continuous

block of soil. The soil properties fluctuate somewhat from point to point, so

the larger the block of soil over which the properties are averaged, the more

¢
o
b) J‘-.'
o

the high and low fluctuations cancel out. The extent of spatial averaging can

'&)'

be measured by calculating the standard deviation among block averages. The

P
hﬁ\ more averaging that goes on within a bhlock, the less variability there is from
e
o one block average to another.
RS
A
’_ For this simple case of averaging individual blow count measurements, the
?}: rate of decrease of the standard deviation as the number of data averaaed in
:f; each boring increases can be approximately calculated., From Part IV, the
fl
iy standard deviation of the borina averaqes onght to decrease by 1/ k as the
> . : .
T nunber of ' values in each boring, k, increases, assuming that the blow counts
T
\:' are mtually independent (i.e., the correlation ceefficient for each pair is
- l- »
' ¥

H5




zero). 1If the blow counts are not independent, that is, they are
autocorrelated, the standard deviation should decrease less quickly than 1/Vk.
The data show 'wavy' variations about their spatial mean, and therefore the
balancing out of spatial variations takes place more slowly,

This decrease in the standard deviation of soil properties averaged over
a volume of soil is summarized by a size effect factor, R. For the averaging
case, R is defined as the ratio of the variance of the average soil property

within a large volume of soil to the variance among test-sized volumes,
R = Vp/Vy » (49)

in which Vv is the variance of the average or mean property among elements.
The ratio of variances rather than standard deviations is used because it is
more convenient for subsequent error analysis calculations.

The rate at which R decreases with increasing soil volume depends on how
erratic the spatial variations are within a soil element. The more erratic
they are, that is, the shorter their 'wave length,' the more averaging that
takes place within a given volume of soil. That is, the extent of averaging as
reflected in R depends on the autocorrelation function of the soil properties.

The simplest (hypothetical) case occurs when a block of soil is thought of
as composed of k smaller elements, each one of which has internally uniform
soil propertise which are statistically independent of the properties of the
other k-1 elements. Let the mean of the individual element properties be m,
and their standard deviation be s,. 1In this case the average property within

the block is,

mpoo= (/KD b oxg (50)
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and the standard deviation of the average mp among blocks is calculated by Eqn.

AN 16 as,

-"ﬂ'. (51)

So, as the numbexr of elements in the block k goes up, the standard deviation

among block averages goes down as 1/Yk. This is approximately what happens in

(\1 Plate 4, in which the SPT values show little vertical autocorrelation.

1L~ In any practical case, the soil block is not divided into discrete

)

! elements but is a continuum. The 'waviness' of soil property variations within
"

N the continuum is described by the autocorrelation function. Knowing the

WA autocorrelation function, the exact shape of the relation of R to soil volume
Ry can be calculated in much the same way Eqn., 49 was calculated.

;' The size effect factor R for spatial averaging of soil properties along a

’ line is shown in Fig., 36, Three common mathematical expressions are often used

to model the decay of autocorrelation with separation distance, that is, the

L e -
X
Farh

-
s
Ht i

autocorrelation function: the exponential-squared, exponential, and power

1@

curve. These expressions are chosen as typical of the models used to

x

analytically summarize autocorrelation. The size effect factor R differs among

»

LS
ettt

the three models for short lengths of averaging, but approaches an asymptotic

o=

value,

2V

-

-
-
P %
d{'l
e

26
o

@

(52)
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: ) as L becomes large. The parameter , is the autocorrelation distance, the
o distance at which autocorrelation decays to 1/e, in which e is the base of the
- natural logarithms.
Wy Figq. 37 shows the size effect factor R for spatial averaging over a two
{
A . . . s
'f. dimensional scquare. Fig. 38 shows R for spatial averaging within a three
-
. dimensional cube, Roth Figs. 37 and 38 are based on isotropic
g
aT.

autocorrelation,

For spatial averaging of soil properties over other shaped surfaces,

R

ARG AR

..

within other shaped volumes, or for other autocorrelation functions (e.g.,
anisotropic autocorrelation), the size effect factor R can be easily calculated

using numerical simulation. This requires a programmable calculator or a small

&
&

computer, but is simple. The procedure for calculating R for arbitrary

>
_

geometries or arbitrary autocorrelation functions is the following:

~~

&

s
)‘l LI B

1. Specify an analytical expression for the autocorrelation function in
the desired number of dimensions.

XA

Jsing a random number generator, randomly choose two points within
the geometric volume to be averaged over.

5;Qﬁ &)u
N

Tu 3. Calculate the correlation between the soil properties at these two
*j& points from the autocorrelation function.

o 4. PRepeat this process many times, at least 100.
w

:: 5. Sum the correlations obtained in the simulations and divide by the
,* number of simulations (find average correlation coefficient). This
Yad is an estimate of the size effect factor R.
15 6. The numerical precision of R calculated by simulation has a standard
. deviation equal to the standard deviation of the simulated

o correlations divided by the square root of the number of repetitions.
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;.v" Spatial Extremes

The importance of spatial variability on calculated predictions depends

[} " .l .l .
S

not only on the volume of soil influenced but also on the mode of performance.

‘i
i, 4
2

w\

For modes of performance which depend on average soil properties, spatial
'Eﬁ variability partially averages out, as .escribed above., However, for modes
o

which depend on worst condtions, for exam, e sliding along a discontinuity or

-
» -

internal erosion in a dam, spatial variability is accentuated. In this latter

case the size-effect factor may be greater than one, and an alteration may be

SN
&

caused to the mean., These cases are outside the scope of the present report.
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Table 2. Frequency Distribution of Test Statistic for Outliers Based
on Range (after Dixon, 1953).

Critical values of the test value

- zn T %t
z -z
Sample Size Critical Values
n =0.05 =0.01
3 0.941 0.988
4 0.765 0.889
5 0.642 0.780
6 0.560 0.698
7 0.507 0.637

Abstracted from Dixon (1983)
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“Lf SUBJECT: Analysis of Noise in SPT Blow Count Data
e \
L
_,if:,

,‘;).::
:-{:: Site Conditions

s

: 4 The site 1s underlain by fine dry sand to a depth of 10m. Fifty SPT
f:ﬁ borings were made across the site and a limited number of laboratory
i“x tests were run to correlate blow count with friction angle. The
Ay trend of depth-averaged blow counts corrected by Gibbs and Holtz's
g*” method is shown below. The mean of the depth averaged SPT blow
e counts in the upper levels 1s 25bpf; the standard deviation 1s

- 15.5bpf. Laboratory tests on specimens recompacted to the in situ
X relative density led to an average friction angle of 36.4°, and a
:;}: standard deviation of 1.1°.
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PLATE 4

AT A T T E T T AEETT TR IS BB

L = 2 it =k

T A AN N T IR AR TEETEIT S R MR T

SUBJECT: Spatial Averaging of SPT Blow Count Data

- = * o

e e FEEEES R R E R EWA W W W A

BORING # 1 2 3 4 5 6
DEPTH =~ e o

1 2 1 2 8 3 4
2 3 8 5 3 7 4
3 8 6 5 3 7 5
4 6 6 7 0 8 7
5 0 2 5 2 5 0
6 3 2 4 1 9 4
7 3 5 0 0 4 1
8 8 3 0 8 8 7

Average and standard deviation of average of n=]1,2, and 8 data:

n =1 my = 3.3 3 -
Sm = 2.5

n =2 my = 5.7 2 -
Sp = 2.0 Sm

n =38 my = 4.2 1 -
sm = 0.9

R e B S B B
O 1 2 3 4 5 6 7 8

number of N-values averaged
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o Figure 11. Maximum Past Pressure Data as a Function of Depth,
ﬁl Line marked "1" shows mean with denth, Solid line at left shows
> in situ effective vertical stress. Symbols refer to different

Y measurement procedures.
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PART IV: SYSTEMATIC ERRORS

Thus far the analysis of uncertainties has concentrated on data scatter.
It was seen that data scatter uncertainties manifest as variability across a
site, for example, variability of settlement from one footing to another.
Another type of uncertainty is also important: systematic error.
Uncertainties due to systematic errors do not manifest as variability across
the site, but appear as a difference between the predicted average performance
and the average performance that occurs in the field. Systematic errors are
biases. Usually they occur because errors are introduced in estimating mean

values of soil properties, loads, or other input variables.

Sources and Importance of Systematic Error

The most important sources of systematic error in soil property estimates
are measurement bias and statistical error. Measurement bias is caused by
inadequacies in the way soil test results are obtained or interpreted. For
example, the stress system imposed on a soil specimen during testing often
differs from that encountered in a prototype situation. To the extent that
strengths or other properties are affected by this difference in stress system,
values calculated from test results will be inappropriate for predictions of
prototype performance.

Statistical errors are due to limited numbers of tests. Because no two
test results are ever the same, variations from one set of results to another
cause variations from one sample mean or sample standard deviation to another.
These variations go down as the number of measurements in a sample goes up, but
they are always present., A sample statistic such as the mean or standard
deviation always varies somewhat from the corresponding actual value across a

soil deposit.
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The importance of drawing a distinction between data scatter
uncertainties and systematic errors is that the two affect predictions in
different ways. For example, spatial variation affects the fraction of a
large project, e.q., a long embankment, that might perform adversely. If
spatial variation indicates a 10% likelihood of adverse performance, this means
that problems should be expected with 10% of the embankment. On the other
hand, systematic error affects the likelihood that the entire project performs
adversely. 1If systematic error indicates a 10% likelihood of adverse
performance this means that problems with the whole embankment should be
expected in one out of 10 projects. The distinction between data scatter and
systematic error is important.

A second difference between spatial variation and systematic error lies in
the way they are affected by scale. If a very large volume of soil is
considered the uncertainty in average soil conditions may not be greatly
affected by spatial variation. Above average elements of soil balance against
below average elements, This averaging does not affect systematic errors.

They are the same everywhere,

It is often convenient to think of spatial variation as the uncertainty in
soll properties caused by variations from spot to spot in a soil deposit.
Systematic errors are uncertainties about the value of the mean or trend in

soil properties,

Measurement and Model Bias

In testing soils, whether in the field or laboratory, a system of
boundary conditions is applied to a specimen and response is measured. From

this response and a set of physical assumptions (i.e., a model), soil
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properties are calculated. These properties are used with another model to
predict performance. Non-random errors are introduced to this process at
several points, and it is these which give rise to measurement bias. These
non~-random errors have systematic and variable parts. The systematic part is
said to be a measurement bias. The zero-mean variable part is lumped with
measurement noise and therefore can be treated as a random error. As a
result, bias does not appear in the data scatter, it is a purely systematic
error, Fig, 28 illustrates the distinction between systematic and random

errors in measurements.

Causes of Measurement and Model Bias

Among the more common measurement errors in soil properties are (a)
inappropriate boundary conditions, (b) inappropriate model assumptions, and
(c) sample disturbance. In most cases there is little reason to separate
measurement bias from model uncertainty. First, measurements and models are
often inseparable, and second, the best way to assess measurement bias is to
backcalculate ‘'correct' parameters by modeling observed failures--~thereby

combining the effects of errors of measurement and errors of modeling.

Assessing Magnitude of Bias

The direct way to establish measurement bias is by comparing
predicted and ohserved performance. For field vane strengths Rjerrum (1972)
compare« observed slope performance with predictions based on modified Rishop
analysis and backcalculated the correction factor,

c, for F=1 at failure (53)
cy measured with iV h
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in which ¢, = undrained strength ani F = factor of safety. The correction
factor reconciles observed failures with predictions (Fig. 39). This bias
factor combines measurement technique and prediction model and is no longer
appropriate if a stability model based on other assumptions is used (e.q., a 3D
model) .

Introducing a measurement/model bias B into Eqn. 38 leads to the

statistical model,

z = Bx+e, (54)

and the summation of variances,

V, = mg Vy + my, Vg + Vg , (55)

in which Vg is the uncertainty in the value of the bias correction B, and
all parameters are valued at their means. In the special case where field vane

measurements were used as input to modified Bishop analysis, B=(1/ ).

Statistical Error

Sampling Variations

Because a limited number of measurements are made at any depth, about 40
in Fig. 32, their average may be above or below the actual spatial average
even if there were no measurement bias. If another set of 40 borings had been
made at slightly different locations, the exact test results would have been
slightly different from those obtained here, and a slightly different estimate

of the average, standard deviation, and other parameters would have resulted,

Thus, the average vane strength at any depth as shown in Fig. 40 probably
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B )
‘_) same everywhere along the axis, It is a systematic error.
‘?V
i)#j Statistical theory allows an assessment to be made of the probable

4
h‘ﬁ magnitude of error that results from limited numbers of observations. One
v".' "
never knows, before hand, the exact magnitude or direction of this statistical

P, error, but the likely range of magnitudes can be calculated. Typically,
Pz
]
r:§§ statistical error is expressed as a variance or standard deviation on the

»,

estimated parameter. For example, the statistical error on the estimate of the

K: average field vane strength at any depth in Fiqg., 40 would he expressed
L
ANg as a variance on the estimated average, Vg 1 in which mey is the estimate
' ,‘.vf

of the mean FV strength. The corresponding standard deviation of the estimate
is said to be the standard error.

The larger the number of measurements at any depth, the lower one might
expect the statistical error to be. In general, the variance of the statis-
tical error decreases approximately in proportion to the reciprocal of the
number of observations, n. DNoubling the number of tests, therefore, reduces
the standard error of a parameter such as the mean or standard deviation by
about 1/ 2. The benefit of increased testing displays marginally diminishing

returns.

FError in the Mean

A From “qn. 16, the variance of the statistical error of the mean of a

§'Q population is approximately,
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A v, = X (56)
n

ol If repeated samples of n tests frorm the same soil deposit are made, if each of

*
X ) the tests is statistically independent of all others, and if for each sample

;1~
s

the mean is calculated, then the variability of those means would have variance

e
X

! ‘.5"2..
= 30 R U

Vy/n.

-

Settlement of footings on cohesionless soils is often estimated to depend

Lo inversely on the average SPT blow count immediately beneath the footing as, for
example, through an equation of the form of Eqn. 41. 1If only one SPT test is
@ taken beneath the footing, the variance of the average N from one footing to
f ' another is, obvicusly, Vy. 1If more than one test is made and the results
R averaged, then the variance among the averages decreases, as can be seen in
Fig. 41. As the number of tests n increases, this variance reduces as 1/n.

This sampling variance of the estimate of the mean is not the uncertainty
5 of the estimate directly, but the variation one might expect to see in
repeated sampling from the same deposit. Nevertheless, under fairly general
‘e conditions this variance is close or identical to the so-called 'Bayesian'
2% variance of the parameter which expresses the uncertainty directly.*
Eqn. 56 refers to the case in which measurements are statistically

independent of one another, When the measurements are not independent, Eqn. S6

* More precisely, the posterior variance on m, in a Bayesian sense is V,/n, if
the prior distribution on my is uniform and VvV, is known. If V, is unknown and
the prior distribution on (my,s,) is noninformative ( 1/s,), then the marginal
posterior variance on my is somewhat larqger,
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must be modified. The most common case in which measurements are dependent
occurs when the spacings among the measurements are small, so that auto-
correlation comes into effect. From Eqn. 15, the variance of m, accounting for

dependence among the measurement x; is

1
V. = — c
My n2 X§,%5 (57)

in which Cxivxj = covariance between the measurements xj and X4. The
individual covariances can be estimated from the autocovariance function
evaluated at the appropriate separation distance. For computer applications a

more convenient matrix version of Egqn. 57 is

1
-tc
n =x

(58)

o I PN

in which 1/n is a vector of dimension n, each element of which is 1/n, and C,
is the covariance matrix of the observations. The ijth element of C, is
Cxi,xj- If the measurements are widely spaced, Eqn. 58 reduces to Egqn. 56. 1In

fact, in most practical applications Egn. 56 is used unless the measurements

are made very close together in space.

Error in the Standard Deviation

The variance of a soil property is usually estimated by the sample

variance,

s = (x4-1y) (59)
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This is an unbiased estimate of VvV, the soil property variance, and has
sampling variability characterized by,

2V
X

—_— (6
vsx n-1 0)

Eqn. A0 is exact when the data are Normally distributed, but only approximate
otherwise. The uncertainty in the standard deviation of x is characterized

approximately by the standard deviation,
Sg  Sy/ 2n . (61)
x

Again, Eqn. 61 is exact for Normally distributed x;, but only approximate
otherwise. More detail is provided by Duncan (1974). For most purposes the
uncertainty in s, can be ignored in developing a design profile. For example,
the sample variance of the data of Fig. 32 is about (10kPa) with a sample size
of n=40 at any elevation. Thus, the standard deviation of s, from these data

is approximately 1.1 kPa.

Error in Regression Coefficients

The estimates of slope and intercept coefficients in regression analysis
are mathematically defined functions of the measurements from which they are
inferred (i.e., x = xj, ..., Xn), and thus the statistical error in these
estimates can be calculated to a first-order approximation by methods given in

Part II,

\ x; 2
v.o= 1 4
a T % - xp) > an (62)
- n Vy
Yoo T W xj )=( xy) ) (63)
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N in which V,; = the variance of the residuals about the regression line (Eqn.
P
\
|:.‘: 23).
i.
fs: The location of the regression line represented by the equation,
.
«J
L y = a+bx+au (64)
!
r
ﬂf is predicted at any point x by inserting the estimates of the regression

’
o

coefficients a and b . The uncertainty in the location of the line at any

0
t‘
'g{ value of x is found by first-order approximation to be (Egqn. 15),

v

Y

¥
wa'dl v =V +V (x -m) (65)
°® My | x a b x
s

S in which VmYIX is read, 'the variance of the mean of y given the value of x.'
- \.-.
t*ﬁ' This is shown in Fig. 43 for the data of Fig. 42. These standard deviation
.
3 N envelopes represent uncertainty of the regression line, that is, of the mean,
15

-~ not of the location of individual measurements which vary about the line. The
v uncertainty on the residuals about the mean trend is expressed by V,. Taken

o

together, the standard deviation envelopes expressing the uncertainty on the

;ﬁ

l.
Pl

magnitude of an individual measurement, accounting both for uncertainty on the

R

mean trend and on residual variation about the mean trend, is,

yr
®:
b

= V_ + Vb(x -ny) +V

ylx = Va (66)

u *
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This is read, 'the variance of y aiven the value of x,' and is shown as the

k.
e

outer envelopes in Fiqg, 43.
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PART V: CONSTRUCTING A STATISTICAL SOIL ENGINEERING PROFILE

This final part presents the procedure for combining best estimates of
soil properties and uncertainty about those estimates into a statistical soil
property profile.

The design profile summarizes available information on the variation of

soil properties with depth. Specifically, the design profile gives,

A best estimate of soil properties with depth, and

Uncertainty envelopes about the best estimate.

These envelopes show the magnitudes of two types of uncertainty in the soil
property estimates. The first set of envelopes shows spatial variability of
soil properties about their mean. The second set shows uncertainty or error in
the mean itself. Fach set of envelopes shows a +/- one standard deviation

interval.

Decomposition of Uncertainty

The methodology presented in this report is based on a decomposition of
uncertainty in soil property estimates. 1In a statistical profile, the sources
of uncertainty which have been analyzed and quantified separately are now
brought back together.
Uncertainty in soil property estimates have been divided into four
components: (i) real (spatial) variability of the soil deposit, (ii) random
measurement noise, (iii) statistical estimation error, and (iv) measurement or |
model bias (Fiq. 44)., The overall error in an estimate of soill properties at
any one point in the soil pcofile is found by combining the individual

contrimutions of the four sources.
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' The contributions are mathematically combined by taking advantage of a
L3
. convenient result from probability theory, that the variances (i.e.,, the
-
{;
1
,ﬁ squares of the standard deviations) of the individual contributions are
€ additive (Cf., Eqn. 15),
)
O\ ' vspatial variation
?f Vdata scatter +
N , Vmeasurement noise

Ve = + (67)
l'.. .
) ’ Vstatistical error
o Vsystematic error *

’ Vmeasurement bias:

[}
,“
<
<{ Vx = Vspatial variation (68)
;5 + Vmeasurement noise
- + Vstatistical error
' * Vmeasurement bias-
\‘ .
&
¥
Py in which Vv, = the total uncertainty in an estimate or prediction of soil
o
e .
: property x, expressed as a variance.
:: In separating spatial variability and systematic error, it is easiest to
-~
oy
1 think of spatial variation as scatter about the trend and to think of

systematic error as uncertainty on the trend itself. The first envelope
reflects soil variability after random measurement error is removed. The
second envelope reflects statistical error and measurement bias.

Rearranging Eqn. 66, the variance of a soil property x is related to the

variances of data scatter, measurement error and measurement bias by,
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W
t‘. The additional uncertainty contributed by statistical error in my, adds to the
>
§ ‘ right-hand-side (RHS) of Eqn. 69 the term V,, of Eqn. 56. The total variance
;g"; in point to point values of x is thus,
'.:Q,
e
ol
‘::* Vz "~ Ve 2 2 Vz
i vV, =—S—— s+ ol +— (70)
- X 2 X B n
B

loy
R~ ’\
:.: The first term on the RHS is the contribution of spatial variation to V4. The
B

W
;‘ second term is the contribution of uncertainty in measurement bias. The third
]
241 term is the contribution of statistical error. Taken together, the second and
B¢

e

PR third term are the systematic error in x, or the error on the mean value. The
"

.‘- first term is the additional uncertainty due to variation of the soil from one
.'. location to another.
~:‘ g
_?.“ Note that the contribution of random measurement error Vo appears only in
!::: its effect on statistical error. Thus, in specific instances--e.qg., if Vp is
W\ e small and n is large--the variance in x, Vy,, can be much less than the data
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o Simple Soil Profile: Field Vane Data
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Site Conditions

The facility was a long water retaining embankment constructed on
approximately 20m of soft marine and lacustrine clays. Field vane data were
collected at every 1m of depth in 27 borings (Fiq. 32), and were scattered.

The scatter in the data varied with depth, but had a coefficient of variation
ranging from 18 to 45%.

Horizontal and vertical autocovariance functions for the Marine clay are
shown in Figs. 33a and 33b. Extrapolations to the origin indicate that about
40% of the data scatter variance in the marine clay can be attributed to noise,
however, little of the scatter in the lacustrine clay appears to he noise.

This difference may be due to small scale variability of the marine clay rather
than measurement error, or may be due to other differences between the two
clays, as e.q., in plasticity index or sensitivity. The resulting separation

of data scatter expressed as coefficients of variation is given in Table 3.

Systematic Exrror

Systematic uncertainty on the mean strength derives from two sources,
statistical error due to limited numbers of tests, and measurement bias due to
differences between the field vane strength and the actual strength mobilized
in embankment failures. Statistical error can be calculated approximately as
Fan. 56, which assumes the tests to be independent, Given the separation of
the tests is larqger than the autocovariance distances, this assumption seemed
satisfactory.

Field vane correction factors, , were used to account for measurement
bias. These were estimated starting from Rjerrum's chart, Fig. 43, and back

calculating strengths from local dyke failures, Uncertainty in the correction




factors were estimated by judgement and inspection as shown in Table 3. Due to
a lack of lahoratory strength and consolidation data at depth a site specific u

was not develonped for the lacustrine clay.

Statistical Soil Engineering Profile

The resulting statistical soil engineering profile is shown in Fiqg. 45.
The best estimate undrained strength with depth is the mean undrained strength.
The inner envelopes show f one standard deviation due to spatial variation.
The total uncertainty in the value of undrained strength at any point,
expressed as a variance is found by adding the variance due to error on the
mean to the variance due to spatial variation. A standard deviation envelope
on the total uncertainty in estimating soil properties at a point is found,
correspondingly, by taking the square root of the sum of tihe squared standard
deviation envelope on error in the mean and spatial variation.

In Part III, a size effect factor R was introduced to account for the
averaging out of spatial variation in a large volume of soil. For design use
this size effect factor R is applied to the spatial variability part of the
soll property uncertainty. The uncertainty in averaqge soil properties in such
a volume of soil is found by reducing the spatial variance contribution by the
factor R, and adding this to the variance in the mean. This has been done for
the profile of Fig. 45 to obtain Fig. 46. This fiqure shows the best estimate
(mean) proiile with * one standard deviation envelope appropriate to different
size failure surfaces throunh the clay for the purpose of 1limit equilibriwm

stability analysis. These envelopes are obtained as,
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failure surfaces
In design, the statistical soil engineering profile of Fig. 46 is the starting

point for error analysis, as described below.

Simple Soil Profile: SPT Data

The second example illustrates a case similar to the first, except that
the site lies on silty-sand alluvium which was characterized by standard

penetration testing.

Site Conditions and Data Scatter

The facility was a low water-retaining rockfill embankment asscciatd with

a large multiple-use water resonrce project. The foundation profile consisted

of approximately 25 feet of alluvium in which a large number of borings were
made (Fig. 47). The horizontal sample autocorrelation function for the SPT
data, shown in Fig. 48, indicated little measurement noise. The supposition
was that lack of significant noise in the data was due to the looseness of the
soil and the low averaqge blow count., The data scatter varied somewhat with

depth, giving a coefficient of variation of about 32%.

Systematic Frror

Pecause the °PT data are used directly, that is, they are not translated

into a fundamental scil property siuch as strenath or deformability, no
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measurenent bias term was used in developinag a statistical soil property

profile. The profile is expressed directly as SPT results. The statistical
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error in the estimate of the mean SPT blow count at any depth interval was

calcuated a per Eqn. 56. This is shown in Plate 5.

Statistical Soil Engineering Profile

The resulting statistical soil engineering profile is shown in Fig. 49.
This profile wac constructed according to Eqn. 70. The vertical bar in each
case shows mean water elevation plus or minus one standard deviation of spatial

and temporal variability,

Derived Soil Profiles

The foregoing case illustrates the construction of a design profile for
calculations directly relating field measurements to model parameters. Not
all situations are direct in this way. Many involve profiles derived from
field measurements, as for example, when using normalized soil properties
(e.q., the SHANSEP approach of Ladd and Foott, 1974). Such a derived
soil profile was used in analyzing an ore stockpile on soft Gulf of Mexico

Clay.

Site C»onditions

The facility was an industrial plant sited alona a bargqe canal on 15 n of
normally consolidated clay. 0Ores for processing are shipped up the canal and
stockpiled next to a dock, Strenqth data for the site taken by field vane
testing are scattered, as are maximun past pressure measuremnents (Fiq, 50).,
This 1ealds tn uncertainty in factors of safety against strength instability.
The uncertainty on factor of safety, in turn, leads to nncertainty on how hiah

the stackpd a
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W can be built before strenqgth increases from consolidation are required to

provide strength stability.

Normalized Soil Properties (SHANSEP)

<\J

The field vane data are too few and too widely spaced and too scattered to

B h\.,-'
B ..h.
\::. confidently estimate soil properties. Therefore, the decision was made to base
e
JONE
Ty o _— : . . : |
5._“;,- stability predictions on normalized soil properties, and to determine the !
, |
calibratina constants from measurements made in the laboratory. |
:-‘f
',.“-t: The SHANSEP proceture was adopted which relates undrained strength cy to
o
7 . . R .
)’:}: in situ stress through the equation,
e c
- u
NN — =k (7 3 3T (72)
L) 31 v vo
O VO
]
~
£y
2590
ol
Or
il in which ,J\./o = effective vertical stress, ’J\'m = maximum past pressure, and
LS
i
::-‘.{
o
A
.-:»4' ko= [ ey/7'yn ]normally consolidated . (73)
-
s
;
’) k is the undrained strength ratin for normally consolidated clay. The
WA parameters k and 7 are considered material constants, and [0' /0' ] = OCR is
A vm vo
“.:;: the over-consnlidation ratin,
x L
-h”}
) Applying Fan. 19,
2.7 05 el s In (o ey oy (74)
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providing a linear composition of the uncertainties on each of the three soil

parameters, k,q, and Oém.

Soil Data

One dimensional consolidation tests were made on specimens recovered in
piston samples at the site. Maximum past pressure estimates 0Oy,p,' from these
tests are shown in Fig. 11. The trend of Oyp' with depth was approximated by
fitting a regression line to the data using Eqns. 20, 21, and 22. The least
squares fit is shown in Fig. 11, The data scatter about the regression line
was estimated using Eqn. 23 to be sy,=1ksf.

Laboratory direct simple shear tests were performed to determine the soil
parameters k and q for the undrained strength model of Egqn. 72. The results of
these tests are shown in Fig. 51, From the test results and judgemental

interpretation the best estimates and standard deviations of q and k were

concluded to be

1
o
O
w

(75)

Recause the measurements of g and k were made with care in the
laboratory, and because too few data were available to establish the structure
of spatial variation in an autocorrelation function, measurement noise was
assuned *o be zero. That is, the assumption was made that V,=0 for the soil
parameter estimate q and k., This assumption is conservative in that
uncertaintv is over estimated, but the extent of conservatism was thouaht to be
small. Peoanse of limited data on 7,,', the same assumptio n that V,=0 was made

for astimates of maximum past pressure,
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U
Y Statistical errors in a and k were estimated from Eqn. 56. There is
e'dﬁ
.}} slijht correlation in the estimates of q and k, because q is measured by the
.
Fat
- increase of normalized strength c,/0' with OCR, starting from k at OCR=1.0.
L
¢ This correlation turned out to be small and was neglected. Statistical error
?
iy
o,
;"f. in the trend of J,,' with depth was estimated from the regression analysis
by
L) -.l . . . .
1y >, using Eqn. 65. Plus/minus one standard deviation envelope on the mean of Oy n'
¥
R with depth are shown in Fig. 11. Measurement and model bias errors were
-
't}‘ estimated subjectively, based on experience with the SHANSEP procedure and on
R
N
A the quality of the laboratory testing progranm.
1070
ol . .
0. Statistical Soil Fngineering Profile
Nt
e
. The resulting statistical soil engineering profile is shown in Fig. 52.
':l
(!' The best estimate of undrained strength with depth is the mean. The inner
S
jx' envelopes show plus or minus one standard deviaton of error on the best
! ..‘-
pi" estimate or mean. The outer envelopes show plus or minus one standard
-,
‘Y
Lo deviation of the spatial variation in undrained strength about the mean trend.
;:: The statistical profile was developed from Eqn. 74 by separately estimating
» -i-“ -
S
v, spatial and systematic components for each of the three terms on the RHS,
.'_'-
o . . . . .
o corresponding respectively to uncertainties in k, dupn', and g (Plate 6). The
o
gt . . : :
- three spatial contributions were added to get the total spatial variability,

.

and the three systematic terms were added to get the total systematic error.

50 In essence, Eaqn. 74 and the division of uncertainty into component types
- @)se
i\: provides an accounting format for keeping track of where uncertainties or
A
i
i) errors originate and how they logically combine,
o
W
Pa ]l
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In this project too few data were available to confidently assess
autocorrelation functions from field data. As a result, the size effect
summarized by the factor R could not be precisely quantified. Therefore, the
final statistical profile shows only the limiting cases of spatial averaging:
the case of very small failure surfaces for which R=1,0, and the case of very
large failure surfaces for which R+0. If a subsequent error analysis shows
that this range of uncertiantiy is too large to be dealt with in design, then

more data would have to be gathered.

Error Analysis

The end result of the statistical data analysis presented in this report
is a statistical soil profile summarizing data scatter and estimates of
systematic error. The design profile gives a best estimate of soil properties
with depth and two sets of standard deviation envelopes, one on the mean and
one on spatial variation.

The next step is to incorporate this statistical characterization of soil
property information in design calculations. That is, to use means, standard
deviations, and correlations of soil properties as the input to geotechnical
modeling, The result of that modeling is a best estimate or mean prediction of
ehqineerinq performance, accompanied by a standard deviation on the prediction,
The techniques for accomplishing this are presented in the companion report,

"Error analysis for geotechnical engineering,” (Contract Raport .i[.-+7-3).




;Jh Table 3

2 Summary of Parameter Fstimates for Error Analyvsis of Fnd-of-
'Ol Construction Stability Analyses for An T'mhankment on Soft (Clay.

LB Field Vane Statistics

Ny m, Marine Lacustrine

Mean, kPa 34.5 31.2

Data Scatter, .i, N.236 0.272

™ ~

Spatial vVariability, [, 0.183 0.272

»
L

Pt

Measurement Noise, ‘I, 0.149 0.000

il
"
» >

P .r -.:'

Systematic Frror

Statistical, 7, 0.030 N0.045

r
4%

PN

Correction factor, ' 0.075 0.15

e

W TNOTAL Rias, ‘... 0.08 0.16
12 mx+l

N Table 4

Soil Profile lUncertainties for Error Analysis

Variable Fxpected Value Variance
Spatial Systematic TOTAL

depth of crust 4m N.96 0.036 1.0
depth to till 18.5m 0.0 1.0 1.0
£ill density 20 kN/m? 1.0 1.0 2.0
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PLATE S

Page

1/2

SURJECT: Statistical Soil Engineering Profile for SPT Data

DESIGN PROFILE:

(1) DATA SCATTER: SPT

17+00--24+50

25+00--32+00

Station 4+00--13+00
mean (bpf) 4.8
standard deviation 2.9
coefficient of 0.60
variation
Measurement Noise -
(From FPigures 4.6, 4.7)
Spatial Variability 2.9

Yvix] = /(v[z]-Vv[el])
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PLATE 5 Page 2/2
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I
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l
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!

|

i

|

[

(2) SYSTEMATIC ERROR f

f

Station 4+00--13+00 17+00==24+50 2H+ NV a3y T !

|

number measurements* 14 ] 20 !

per depth interval

!

Statistical Error 0.78 0.84 n,9] ]

Yvimge]l = Yv({zl/n !

Model Bias n/a n/a n/a

Total Systematic Error 0.78 0.84 N.98

* (varies with depth, numbers are representative)

(3) DESIGN PROFILE

(Shown as Figure 49)
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APPENDIX A: STATISTICAL CONSIDERATIONS IN ESTIMATING AUTOCOVARIANCE

ESTIMATION OF AUTOCOVARIANCE FUNCTIONS

This appendix briefly discusses alternative statistical approaches to
estimating autocovariance functions from soil data. Detailed presentation of
mathematical procedures and statistical properties of the techniques are
presented in Spikula (1983) and DeGroot (1985},

Three techniques are commonly used to estimate autocovariance functions in
the analysis of site characterization data: the moment estimator, the BLUE
minimization estimator, and the maximum likelihood estimator. These have

different strengths and weaknesses, and may lead to slightly differing results.

Moment estimator

The moment estimator uses the autocovariance function calculated directly

from the observed measurements as an estimator of the autocovariance of the

underlying spatial process:

1
ng~1

) L (zy-my) (zj45-my) (a1)

in which ns = the number of data pairs at separation distance 8,

RLUF minimization estimator

The PLUE minimization uses the autocorrelation function that minimizes the
squared error between estimated and ubserved soil properties at the measurement
points as an estimate of the autocovariance of the underlying spatial process.
That is, soil properties are estimated at each of the observed points by
removing tha* measurement from the data base and nsing the remaining (n-1) data

to estimate it nsing a hest linear unbiased estimation (RLUY) technique
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(Spikula, 1983). That autocovariance function which minimizes the variance of
the error between obhserved and predicted measurements is taken as the estimate.
This is a parametric model in that the mathematical shape of the autocovariance

function mast be specified,

Maximum Tikelihood Estimator

The maximum likelihood estimator uses the autocorrelation function that
maximizes the conditional probability of the measurements actually made (i.e.,
the 'likelihood') as the estimator of the autocovariance of the underlving

spatial process,

P
»

- Colr) z.t.: min  Lizqy, ... ,z5] = min  MN(3x, C,) (A.2)
° Cc,(r) C,(r)
£
fs in which 1.[z] = the likelihood or conditional probability of the vector of data
~ A
z, MN() = the multiNormal probability density function, ﬁ = a vector of
reqgression coefficients for the mean trend of the data, x = the matrix of

X < s . . 2 X
location coefficients each row of which is <1,xi,xi“,xi3,...,xik> where k is
the order of the rearession surtace, and C, = the covariance matrix of the

observations calculated via the autocovariance function (DeGroot, 1985), This

JL"I

Pl
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is also a parametric model. {

e

Comparison of Estimation Techniques

The moment estimator technique is by far the most commonly used approach
in present (1985) practice, but it has statistical limitations. The advantages
of the moment approach are that it is mathematically and conceptually easy to
use, and that it requires relatively modest computations. The disadvantages

are that it is statistically biased and inefficient, and it 1is difficult to use

»
»
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when data are not sampled on uniform qrids.
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:L' The BLUE estimator technique has not been widely used in geotechnical
f
{ engineering, but it is common in mining engineering and 'geostatistics.' Its
]
N
in principal advantages are that it is more flexible than the moment estimator in
i
¥ making use of non-uniformly sampled data, and it requires less intuitive input.
L}
L/
:{ Its principal disadvantages are that it is computationally intensive and its
,d statistical properties are poorly studied.
Sy
* The maximur ._ikelihood estimator is not widely used in either geotechnical
X
nﬂ engineering o+ mining, but it is increasingly common in other areas of statis-
‘. . . L . ,
7, tical data processing (e.g., in time series analysis and signal processing).
o,
'; Its major advantage is that its statistical properties are well known and
: desirable (e.q., it is asymptotically unbiased and efficient), and it easily
,\l
b accommodates non-uniformly sampled data. Its major disadvantage is that the
%
(* computational algorithms required to use the method are complicated, although
.. not intensive of computer time. This disadvantage can be overcome using
-
- packaged programs.
- Packaged computer programs are available for each of the three methods of
" estimating autocorrelation functions. Most can be tailored to run on present
r
. microcomputers.
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APPENDIX B: SYMBOL LIST

regression coefficients
= constant
measurement bias correction coefficient
footing width
cost of failure
= risk cost
= autocovariance function for separation distance §
= covariance of x and y
= covariance matrix
virgin compression ratio
recompression ratio
undrained strength
embedment depth of footing
geometric properties of scatter graph
random measurement error
cumulative frequency of observation i
elastic modulus
factor of safety
field vane
matrix of derivatives with ijth element dyi/dxj
deterministic function of x
horizontal load
qgeometric properties of scatter graph
stratum thickness
SHANSEP strength parameter
dilation anqle
counter number
mean of x
number of measurements
length
= likelihood of =z
- vartical compression coefficient
3PT blow count
= bearing capacity factor
overconsolidation ratio
= probability of bearing capacity failure
probability of failure
= probabhility of excessive settlement
= probahility of
SiIANSFP strength parameter
= applied footing stress
desiqn stress
= hearing capacity
correlation coefficient of xy
aiatocorrelation distance, C.(ro)=1/e
size effect factor
= autocorrelation function over separation distance §
standard deviation of x
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- (continued)
.
152
W
o, t = Student's t statistic
o ti = trend
; ; u = residual variation about regression line
) \ = vertical load
o Vy = variance of x
o Wy = range of x
,i& X = soil property
P X = vector of data Xq,...,Xp
,*b X3, = ith measurement of property x, or x at location i
Xma x largest value of x
‘ xmin smallest value of x
oy Xp.25 = 25th fractile of x
[} L) - N
.‘4? X0.5 = 50th fractile of x
B .
hﬂﬁ Xp.75 = 75th fractile of x

-
-
s
~
]

predicted performance variable
Yo = design specification on variable y
measured soil property, depth

Py
RAS
N
1]

= critical probability level
reliability index
= vector of regression coefficients

s

oo o R
1]

- e S A T

. Y = soil density
ot § = separation distance
' é 8o = autocorrelation distance
\¢: £ = strain
N " n = point of expansion in Taylor's series
ﬁ‘f 6 = slope angle
D) ] = Bjerrum's FV correction factor
,ﬁ, v = degrees of freedom
o p = settlement
gt g stress
%. Tym' = maximum past pressure
1y 0y0' = effective vertical stress
® 0ye' = final consolidation stress
?. ¢! = effective stress friction angle
J}ﬁ Ry = coefficient of variation
ﬂ} W = outlier test statistic
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